Review article | Open Access
Helia 2025, Vol. 48(83) 103-124
pp. 103 - 124 | DOI: https://doi.org/10.29329/helia.2025.1411.4
Publish Date: December 31, 2025 | Single/Total View: 0/0 | Single/Total Download: 0/0
Abstract
Sunflower (Helianthus annuus L.) is the third most widely grown oilseed worldwide, the production concentrated in Ukraine, Russia, Argentina, Turkiye, Romania, and USA. Due to global demand for sunflowers, there is an increase in cultivation of sunflowers. Nonetheless, sunflower production is affected by abiotic and biotic stress factors. Particularly, the parasite plant Orobanche and fungus downy mildew are the two major biotic stress factors that could cause serious losses in sunflower production. Various control methods such as chemical, mechanical, biological, cultural, etc. are used to cope with these two problems. Due to the speed proliferation of the two, the traditional methods are insufficient to provide sustainable and environmentally friendly solutions. Therefore, it is necessary to use combinations of classical breeding and genomic approaches to identify genetic bases of resistance and incorporate these into breeding programs to achieve long-term resistance to Orobanche and downy mildew. Genome-wide association studies (GWAS) are powerful methods to detect genomic regions controlling the traits of interest in crops and have not been used extensively for identification of genomic regions controlling Orobanche and downy mildew. In this article, the state of resistance to Orobanche and downy mildew as well as GWAS approach to identification of the genomic regions controlling resistance to both are summarized.
Keywords: Downy mildew; GWAS; Orobanche; Resistance; Sunflower (Helianthus annuus L.)
APA 7th edition
Yasti, O.G., Cil, A., Cil, A.N., & Sakiroglu, M. (2025). Unlocking The Genetic Code of the Sunflower Resistance to Downy Mildew and Orobanche: A Review Short Title: A review of GWAS in Sunflower. Helia, 48(83), 103-124. https://doi.org/10.29329/helia.2025.1411.4
Harvard
Yasti, O., Cil, A., Cil, A. and Sakiroglu, M. (2025). Unlocking The Genetic Code of the Sunflower Resistance to Downy Mildew and Orobanche: A Review Short Title: A review of GWAS in Sunflower. Helia, 48(83), pp. 103-124.
Chicago 16th edition
Yasti, Ozlem Gul, Abdullah Cil, Ayse Nuran Cil and Muhammet Sakiroglu (2025). "Unlocking The Genetic Code of the Sunflower Resistance to Downy Mildew and Orobanche: A Review Short Title: A review of GWAS in Sunflower". Helia 48 (83):103-124. https://doi.org/10.29329/helia.2025.1411.4
Adeleke, B.S., Babalola, O.O., 2020. Oilseed crop sunflower (Helianthus annuus) as a source of food: Nutritional and health benefits. Food Sci. Nutr. 8, 4666–4684. https://doi.org/10.1002/fsn3.1783
Akpınar, E., Hasançebi, S., Kaya, Y., 2019. Ayçiçeğinde Mildiyö [Plasmopara halstedii (Farl.) Berl. and de Toni] Hastalığına Dayanıklı Genotiplerin Moleküler Markörler Kullanılarak Belirlenmesi. ANADOLU Ege Tarımsal Araşt. Enstitüsü Derg. 29, 140–153. https://doi.org/10.18615/anadolu.660288
Bán, R., Kiss, J., Pálinkás, Z., Körösi, K., 2023. Placing Management of Sunflower Downy Mildew (Plasmopara halstedii (Farl.) Berl. et de Toni) under an Integrated Pest Management (IPM) System Approach: Challenges and New Perspectives. Agronomy 13, 1029. https://doi.org/10.3390/agronomy13041029
Bán, R., Kovács, A., Nisha, N., Pálinkás, Z., Zalai, M., Yousif, A.I.A., Körösi, K., 2021. New and High Virulent Pathotypes of Sunflower Downy Mildew (Plasmopara halstedii) in Seven Countries in Europe. J. Fungi 7, 549. https://doi.org/10.3390/jof7070549
Bashir, T., 2015. Chemistry, Pharmacology and Ethnomedicinal Uses of Helianthus annuus (Sunflower): A Review. Pure Appl. Biol. 4, 226–235. https://doi.org/10.19045/bspab.2015.42011
Beck, T., Hastings, R.K., Gollapudi, S., Free, R.C., Brookes, A.J., 2014. GWAS Central: a comprehensive resource for the comparison and interrogation of genome-wide association studies. Eur. J. Hum. Genet. 22, 949–952. https://doi.org/10.1038/ejhg.2013.274
Calderón-González, Á., Pérez-Vich, B., Pouilly, N., Boniface, M.-C., Louarn, J., Velasco, L., Muños, S., 2023. Association mapping for broomrape resistance in sunflower. Front. Plant Sci. 13, 1056231. https://doi.org/10.3389/fpls.2022.1056231
Cartry, D., Steinberg, C., Gibot-Leclerc, S., 2021. Main drivers of broomrape regulation. A review. Agron. Sustain. Dev. 41, 17. https://doi.org/10.1007/s13593-021-00669-0
Cebeci, Z., Şakiroğlu, M., Bayraktar, M., 2024. GWAS’ın Temelleri, in: GWAS Genom Boyu İlişkilendirme Çalışmaları. Nobel Akademik Yayıncılık, Ankara, pp. 5–17.
Cvejić, S., Radanović, A., Dedić, B., Jocković, M., Jocić, S., Miladinović, D., 2020. Genetic and Genomic Tools in Sunflower Breeding for Broomrape Resistance. Genes 11, 152. https://doi.org/10.3390/genes11020152
Dimitrijevic, A., Horn, R., 2018. Sunflower Hybrid Breeding: From Markers to Genomic Selection. Front. Plant Sci. 8. https://doi.org/10.3389/fpls.2017.02238
Fernández-Martínez, J.M., Pérez-Vich, B., Velasco, L., 2015. Sunflower Broomrape (Orobanche cumana Wallr.), in: Martínez-Force, E., Dunford, N.T., Salas, J.J. (Eds.), Sunflower. AOCS Press, pp. 129–155. https://doi.org/10.1016/B978-1-893997-94-3.50011-8
Fernández-Martínez, J.M., Velasco, L., Pérez-Vich, B., 2012. Progress in Research on Breeding for Resistance to Sunflower Broomrape. HELIA 35, 47–56. https://doi.org/10.2298/hel1257047f
Filippi, C.V., Corro Molas, A., Dominguez, M., Colombo, D., Heinz, N., Troglia, C., Maringolo, C., Quiroz, F., Alvarez, D., Lia, V., Paniego, N., 2022. Genome-Wide Association Studies in Sunflower: Towards Sclerotinia sclerotiorum and Diaporthe/Phomopsis Resistance Breeding. Genes 13, 2357. https://doi.org/10.3390/genes13122357
Gascuel, Q., Bordat, A., Sallet, E., Pouilly, N., Carrere, S., Roux, F., Vincourt, P., Godiard, L., 2016. Effector Polymorphisms of the Sunflower Downy Mildew Pathogen Plasmopara halstedii and Their Use to Identify Pathotypes from Field Isolates. PLOS ONE 11, e0148513. https://doi.org/10.1371/journal.pone.0148513
Gascuel, Q., Martinez, Y., Boniface, M., Vear, F., Pichon, M., Godiard, L., 2014. The sunflower downy mildew pathogen Plasmopara halstedii. Mol. Plant Pathol. 16, 109–122. https://doi.org/10.1111/mpp.12164
Goldwasser, Y., Eizenberg, H., Hershenhorn, J., Plakhine, D., Blumenfeld, T., Buxbaum, H., Golan, S., Kleifeld, Y., 2001. Control of Orobanche aegyptiaca and O. ramosa in potato. Crop Prot. 20, 403–410. https://doi.org/10.1016/S0261-2194(00)00162-9
Gontcharov, S., Goloschapova, N., 2021. Evaluation of horizontal resistance of sunflower (Helianthus annuus L.) to downy mildew (Plasmopara halstedii). OCL 28, 58. https://doi.org/10.1051/ocl/2021047
Guan, Y., Stephens, M., 2011. Bayesian variable selection regression for genome-wide association studies and other large-scale problems. Ann. Appl. Stat. 5, 1780–1815. https://doi.org/10.1214/11-AOAS455
Gulya, T., Rashid, K.Y., Masirevic, S.M., 1997. Sunflower Diseases, in: Sunflower Technology and Production. John Wiley & Sons, Ltd, pp. 265–276. https://doi.org/10.2134/agronmonogr35.c6
Habimana, S., Nduwumuremyi, A., Chinama R, J.D., 2014. Management of orobanche in field crops: A review. J. Soil Sci. Plant Nutr. 0–0. https://doi.org/10.4067/S0718-95162014005000004
Hladni, N., Terzić, S., Mutavdžić, B., Zorić, M., 2017. Classification of confectionary sunflower genotypes based on morphological characters. J. Agric. Sci. 155, 1594–1609. https://doi.org/10.1017/S0021859617000739
Humann, R.M., Johnson, K.D., Wunsch, M.J., Meyer, S.M., Jordahl, J.G., Bauske, E.C., Halvorson, J.M., Friskop, A.J., O’Bryan, K.A., Gulya, T.J., Markell, S.G., 2019. Evaluation of Oxathiapiprolin for the Management of Sunflower Downy Mildew. Plant Dis. 103, 2498–2504. https://doi.org/10.1094/PDIS-11-18-2045-RE
Korte, A., Farlow, A., 2013. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9, 29. https://doi.org/10.1186/1746-4811-9-29
Kucherenko, Y.Y., 2024. (PDF) Marker-assisted selection and use of molecular markers in sunflower breeding for resistance to diseases and parasites. ResearchGate. https://doi.org/10.26565/2075-5457-2022-38-2
Lebedeva, M.A., Gancheva, M.S., Losev, M.R., Krutikova, A.A., Plemyashov, K.V., Lutova, L.A., 2023. Molecular and Genetic Bases for Sunflower Resistance to Broomrape. Russ. J. Plant Physiol. 70, 92. https://doi.org/10.1134/S1021443723600824
Lipka, A.E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P.J., Gore, M.A., Buckler, E.S., Zhang, Z., 2012. GAPIT: genome association and prediction integrated tool. Bioinformatics 28, 2397–2399. https://doi.org/10.1093/bioinformatics/bts444
Liu, X., Huang, M., Fan, B., Buckler, E.S., Zhang, Z., 2016. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLOS Genet. 12, e1005767. https://doi.org/10.1371/journal.pgen.1005767
Louarn, J., Boniface, M.-C., Pouilly, N., Velasco, L., Pérez-Vich, B., Vincourt, P., Muños, S., 2016. Sunflower Resistance to Broomrape (Orobanche cumana) Is Controlled by Specific QTLs for Different Parasitism Stages. Front. Plant Sci. 7. https://doi.org/10.3389/fpls.2016.00590
Louarn, J., Carbonne, F., Delavault, P., Bécard, G., Rochange, S., 2012. Reduced Germination of Orobanche cumana Seeds in the Presence of Arbuscular Mycorrhizal Fungi or Their Exudates. PLoS ONE 7, e49273. https://doi.org/10.1371/journal.pone.0049273
Ma, G., Song, Q., Underwood, W.R., Zhang, Z., Fiedler, J.D., Li, X., Qi, L., 2019. Molecular dissection of resistance gene cluster and candidate gene identification of Pl17 and Pl19 in sunflower by whole-genome resequencing. Sci. Rep. 9, 14974. https://doi.org/10.1038/s41598-019-50394-8
Ma, G.J., Song, Q.J., Markell, S.G., Qi, L.L., 2018. High-throughput genotyping-by-sequencing facilitates molecular tagging of a novel rust resistance gene, R 15 , in sunflower (Helianthus annuus L.). TAG Theor. Appl. Genet. Theor. Angew. Genet. 131, 1423–1432. https://doi.org/10.1007/s00122-018-3087-5
McCarthy, M.I., Abecasis, G.R., Cardon, L.R., Goldstein, D.B., Little, J., Ioannidis, J.P.A., Hirschhorn, J.N., 2008. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9, 356–369. https://doi.org/10.1038/nrg2344
Meral, Ü.B., 2019. Ayçiçeği (Helianthus annuus L.,) Bitkisinin Önemi ve Üretimine Genel Bir Bakış. Int. J. Life Sci. Biotechnol. 2, 58–71. https://doi.org/10.38001/ijlsb.535889
Miladinović, D., Jocić, S., Dedić, B., Cvejić, S., Dimitrijević, A., Imerovski, I., Malidža, G., 2014. Current situation of sunflower broomrape around the world, in: ResearchGate.
Molinero-Ruiz, L., 2022. Sustainable and efficient control of sunflower downy mildew by means of genetic resistance: a review. Theor. Appl. Genet. 135, 3757–3771. https://doi.org/10.1007/s00122-022-04038-7
Nishtha, Yadav, S., Meena, R.K., Godara, S., Shamoon, A., Kumar, K., Garg, R., Thakur, A., 2025. First de novo genome-specific development, characterization and validation of simple sequence repeat (SSR) markers in Bambusa polymorpha, a commercially important bamboo of India. 3 Biotech 15, 43. https://doi.org/10.1007/s13205-025-04212-w
Pecrix, Y., Penouilh-Suzette, C., Muños, S., Vear, F., Godiard, L., 2018. Ten Broad Spectrum Resistances to Downy Mildew Physically Mapped on the Sunflower Genome. Front. Plant Sci. 9. https://doi.org/10.3389/fpls.2018.01780
Petraru, A., Ursachi, F., Amariei, S., 2021. Nutritional Characteristics Assessment of Sunflower Seeds, Oil and Cake. Perspective of Using Sunflower Oilcakes as a Functional Ingredient. Plants 10, 2487. https://doi.org/10.3390/plants10112487
Pubert, C., Boniface, M.-C., Legendre, A., Chabaud, M., Carrère, S., Callot, C., Cravero, C., Dufau, I., Patrascoiu, M., Baussart, A., Belmonte, E., Gautier, V., Poncet, C., Zhao, J., Hu, L., Zhou, W., Langlade, N., Vautrin, S., Coussy, C., Muños, S., 2024. A cluster of putative resistance genes is associated with a dominant resistance to sunflower broomrape. Theor. Appl. Genet. 137, 103. https://doi.org/10.1007/s00122-024-04594-0
Puttha, R., Venkatachalam, K., Hanpakdeesakul, S., Wongsa, J., Parametthanuwat, T., Srean, P., Pakeechai, K., Charoenphun, N., 2023. Exploring the Potential of Sunflowers: Agronomy, Applications, and Opportunities within Bio-Circular-Green Economy. Horticulturae 9, 1079. https://doi.org/10.3390/horticulturae9101079
Qi, L.L., Talukder, Z.I., Ma, G.J., Seiler, G.J., 2023. Introgression and targeting of the Pl37 and Pl38 genes for downy mildew resistance from wild Helianthus annuus and H. praecox into cultivated sunflower (Helianthus annuus L.). Theor. Appl. Genet. 136, 82. https://doi.org/10.1007/s00122-023-04316-y
Rogers, K., 2025. Genome-Wide Association Study [WWW Document]. Encylopedia Br. URL https://www.britannica.com/topic/genome-wide-association-study (accessed 3.19.25).
Şakiroğlu, M., 2022. İlişkilendirme Haritası (Association Mapping), in: Genomik Analiz İçin Biyoinformatik Yöntemler. Palme Yayınları, Ankara, pp. 209–233.
Sakiroglu, M., Brummer, E.C., 2017. Identification of loci controlling forage yield and nutritive value in diploid alfalfa using GBS-GWAS. Theor. Appl. Genet. 130, 261–268. https://doi.org/10.1007/s00122-016-2782-3
Schneeweiss, G.M., Palomeque, T., Colwell, A.E., Weiss-Schneeweiss, H., 2004. Chromosome numbers and karyotype evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. Am. J. Bot. 91, 439–448. https://doi.org/10.3732/ajb.91.3.439
Seiler, G.J., 1997. Anatomy and Morphology of Sunflower, in: Sunflower Technology and Production. John Wiley & Sons, Ltd, pp. 67–111. https://doi.org/10.2134/agronmonogr35.c3
Shindrova, P., 2006. BROOMRAPE (Orobanche cumana Wallr.) IN BULGARIA - DISTRIBUTION AND RACE COMPOSITION / EL JOPO DE GIRASOL (Orobanche cumana Wallr.) EN BULGARIA – EXTENSIÓN Y CONTENIDO RACIAL / L’OROBANCHE (Orobanche cumana Wallr.) EN BULGARIE – DISTRIBUTION DU PARASITE. HELIA 29, 111–120. https://doi.org/10.2298/hel0644111s
Škorić, D., Pacureanu, M., 2010. Sunflower breeding for resistance to broomrape (Orobanche cumana Wallr.). Proc. Int. Symp. “Sunflower Breed. Resist. Dis. Krasn. Russ. 19–30.
Spring, O., 2019. Spreading and global pathogenic diversity of sunflower downy mildew - Review. Plant Prot. Sci. 55, 149–158. https://doi.org/10.17221/32/2019-PPS
Talukder, Z.I., Ma, G., Hulke, B.S., Jan, C.-C., Qi, L., 2019. Linkage Mapping and Genome-Wide Association Studies of the Rf Gene Cluster in Sunflower (Helianthus annuus L.) and Their Distribution in World Sunflower Collections. Front. Genet. 10, 216. https://doi.org/10.3389/fgene.2019.00216
Tam, V., Patel, N., Turcotte, M., Bossé, Y., Paré, G., Meyre, D., 2019. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 20, 467–484. https://doi.org/10.1038/s41576-019-0127-1
Tibbs Cortes, L., Zhang, Z., Yu, J., 2021. Status and prospects of genome-wide association studies in plants. Plant Genome 14, e20077. https://doi.org/10.1002/tpg2.20077
Tör, M., Wood, T., Webb, A., Göl, D., McDowell, J.M., 2023. Recent developments in plant-downy mildew interactions. Semin. Cell Dev. Biol., Special Issue: Plant pathogens and disease susceptibility 148–149, 42–50. https://doi.org/10.1016/j.semcdb.2023.01.010
Ueno, K., Furumoto, T., Umeda, S., Mizutani, M., Takikawa, H., Batchvarova, R., Sugimoto, Y., 2014. Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower. Phytochemistry 108, 122–128. https://doi.org/10.1016/j.phytochem.2014.09.018
Uffelmann, E., Huang, Q.Q., Munung, N.S., de Vries, J., Okada, Y., Martin, A.R., Martin, H.C., Lappalainen, T., Posthuma, D., 2021. Genome-wide association studies. Nat. Rev. Methods Primer 1, 1–21. https://doi.org/10.1038/s43586-021-00056-9
USDA, 2024. Sunflowerseed | USDA Foreign Agricultural Service [WWW Document]. URL https://fas.usda.gov/data/production/commodity/2224000 (accessed 12.18.24).
Viranyi, F., Spring, O., 2011. Advances in sunflower downy mildew research. Eur. J. Plant Pathol. 129, 207–220. https://doi.org/10.1007/s10658-010-9683-0
Visscher, P.M., Wray, N.R., Zhang, Q., Sklar, P., McCarthy, M.I., Brown, M.A., Yang, J., 2017. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am. J. Hum. Genet. 101, 5–22. https://doi.org/10.1016/j.ajhg.2017.06.005
Wang, Q., Tian, F., Pan, Y., Buckler, E.S., Zhang, Z., 2014. A SUPER Powerful Method for Genome Wide Association Study. PLOS ONE 9, e107684. https://doi.org/10.1371/journal.pone.0107684
Wolc, A., Dekkers, J.C.M., 2022. Application of Bayesian genomic prediction methods to genome-wide association analyses. Genet. Sel. Evol. 54, 31. https://doi.org/10.1186/s12711-022-00724-8
Zhang, Z., Ersoz, E., Lai, C.-Q., Todhunter, R.J., Tiwari, H.K., Gore, M.A., Bradbury, P.J., Yu, J., Arnett, D.K., Ordovas, J.M., Buckler, E.S., 2010. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 42, 355–360. https://doi.org/10.1038/ng.546