Research article    |    Open Access
Helia 2025, Vol. 48(82) 51-73

Argentine Research Into Crop Ecophysiology Contributing to Crop Management and Genetic Improvement of Sunflower

Monica López Pereira, Deborah Rondanini

pp. 51 - 73   |  DOI: https://doi.org/10.29329/helia.2025.1334.4

Publish Date: July 08, 2025  |   Single/Total View: 0/0   |   Single/Total Download: 0/0


Abstract

Crop ecophysiology analyzes the behavior of plant populations in interaction with their environment. This discipline integrates concepts from plant physiology, agronomy, and ecology to develop management strategies for farmers and guide the genetic improvement of crops. The inception of Argentine research in sunflower ecophysiology almost coincides with the beginning of ecophysiology research in the country. Pioneering contributions to the international literature on sunflower by Argentine authors date back to 1985. To date, Argentine researchers have authored a total of 184 papers on sunflower ecophysiology in international journals, with an average publication rate of 5.7 papers per year during the period 2021–2023. This research has addressed a wide range of topics, including phenology, the eco-physiological and numerical determinants of yield and quality, the effects of abiotic factors on these determinants, the optimization of management practices for resource-limited environments, and genotype × environment interactions, among others. Currently, sunflower is regarded by Argentine farmers as a medium- to low-yield crop, often used as an alternative to soybean and maize in situations where these crops cannot be cultivated. However, advances in ecophysiological research in Argentina have the potential to enhance sunflower's competitiveness relative to other grain crops. The knowledge accumulated through crop ecophysiology and associated disciplines (e.g., ecology, agronomy, plant breeding, molecular biology, and genomics), along with significant methodological advances in testing techniques and data interpretation, offers an encouraging outlook for addressing the challenges of sunflower production.

Keywords: Argentina ecophyisiological research on sunflower; main research topics; future challenges of ecophysiological research on sunflower in Argentina


How to Cite this Article?

APA 7th edition
Pereira, M.L., & Rondanini, D. (2025). Argentine Research Into Crop Ecophysiology Contributing to Crop Management and Genetic Improvement of Sunflower. Helia, 48(82), 51-73. https://doi.org/10.29329/helia.2025.1334.4

Harvard
Pereira, M. and Rondanini, D. (2025). Argentine Research Into Crop Ecophysiology Contributing to Crop Management and Genetic Improvement of Sunflower. Helia, 48(82), pp. 51-73.

Chicago 16th edition
Pereira, Monica López and Deborah Rondanini (2025). "Argentine Research Into Crop Ecophysiology Contributing to Crop Management and Genetic Improvement of Sunflower". Helia 48 (82):51-73. https://doi.org/10.29329/helia.2025.1334.4

References
  1. Aguirrezábal, L.A.N., Pellerin, S. and Tardieu, F. (1993). Carbon nutrition, root branching and elongation. Can the present state of knowledge allow a predictive approach at a whole plant level? Environ. Exp. Bot. 33:121-130. [Google Scholar]
  2. Aguirrezábal, L.A.N., Deleens, E. and Tardieu, F. (1994). Root elongation rate is accounted for by intercepted PPFD and source sink relations in field and laboratory grown sunflower. Plant Cell Environ. 17:443-450. [Google Scholar]
  3. Aguirrezábal, L.A.N. and Tardieu, F. (1996). An architectural analysis of the elongation of the field grown sunflower root system. Elements for modeling the effects of temperature and intercepted radiation. J. Exp. Bot. 47:411-420. [Google Scholar]
  4. Aguirrezábal, L.A.N., Lavaud, Y., Dosio, G.A.A., Izquierdo, N.G., Andrade, F.H., and González, L.M. (2003). Intercepted solar radiation effect during grain filling determines sunflower weight per seed and oil concentration. Crop Sci. 43: 152-161. [Google Scholar]
  5. Aguirrezábal, L., Martre, P., Pereyra-Irujo, G., Izquierdo, N., and Allard, V. (2009). Management and breeding strategies for the improvement of grain and oil quality. In: Sadras, V.O, Calderini, D.F. (Eds.), Crop Physiology (First Edition): Applications for Genetic Improvement and Agronomy, Academic Press (Elsevier), San Diego, pp. 387-421. [Google Scholar]
  6. Aguirrezábal, L., Martre, P., Pereyra-Irujo, G., Echarte, M. M., and Izquierdo, N. (2015). Improving grain quality: ecophysiological and modeling tools to develop management and breeding strategies. In: Sadras, V.O, Calderini, D.F. (Eds.), Crop Physiology (Second Edition): Applications for Genetic Improvement and Agronomy, Academic Press (Elsevier), San Diego, pp. 423-465. [Google Scholar]
  7. Alberio, C., Izquierdo, N. G., and Aguirrezábal, L.A.N. (2015). Sunflower Crop Physiology and Agronomy. In: Martínez-Force, E., Dunford, N.T and Salas J.J. (Eds.), Sunflower: Chemistry, Production, Processing, and Utilization, AOCS Press, Urbana, pp. 53-91. [Google Scholar]
  8. Alberio, C., Aguirrezábal, L. A., Izquierdo, N. G., Reid, R., Zuil, S., and Zambelli, A. (2018). Effect of genetic background on the stability of sunflower fatty acid composition in different high oleic mutations. J. Sci. Food Agric. 98: 4074-4084. [Google Scholar]
  9. Andrade, F.H. and Ferreiro, M. (1996). Reproductive growth of maize, sunflower and soybean at different source levels during grain filling. Field Crops Res. 48:155-165. [Google Scholar]
  10. Andrade, F.H., and Sadras, V. (2000). Bases para el manejo del maíz, el girasol y la soja. INTA, Universidad Nacional de Mar del Plata. [Google Scholar]
  11. Andrade, F.H., Sadras, V.O., Vega, C.R.C., and Echarte, L. (2005). Physiological determinants of crop growth and yield in maize, sunflower and soybean: their application to crop management, modeling and breeding. J. Crop Improv. 14:51-101. [Google Scholar]
  12. Andrade, F.H. (2012). Contribuciones de la Ecofisiologia de Cultivos a la Producción Agrícola. Anales de la Academia Nacional de Agronomía y Veterinaria, tomo LXVI:345-377. [Google Scholar]
  13. Andrade, J.F., Cerrudo, A., Rizzalli, R.H., and Monzon, J.P. (2012). Sunflower–soybean intercrop productivity under different water conditions and sowing managements. Agron. J. 104: 1049-1055. [Google Scholar]
  14. Andriani, J.M. (2000). Crecimiento de las raíces en los principales cultivos extensivos en suelos argiudoles de la provincia de Santa Fe. INTA EEA Oliveros. Para Mejorar la Producción 13:40–44. [Google Scholar]
  15. Angeloni, P., Echarte, M.M., Irujo, G.P., Izquierdo, N., and Aguirrezábal, L. (2017). Fatty acid composition of high oleic sunflower hybrids in a changing environment. Field Crops Res. 202:146-157. [Google Scholar]
  16. Angeloni, P., Aguirrezábal, L., and Echarte, M.M. (2021). Assessing the mechanisms underlying sunflower grain weight and oil content responses to temperature during grain filling. Field Crops Res. 262:108040. [Google Scholar]
  17. Aramburu Merlos, F., Monzon, J.P., Mercau, J.L., Taboada, M., Andrade, F.H., Hall, A.J., Jobbagy, E., Cassman, K.G. and Grassini, P. (2015). Potential for crop production increase in Argentina through closure of existing yield gaps. Field Crops Res. 184:145-154. [Google Scholar]
  18. Astiz, V., Iriarte, L.A., Flemmer, A., and Hernández, L.F. (2011). Self-compatibility in modern hybrids of sunflower (Helianthus annuus L.). fruit set in open and self-pollinated (bag isolated) plants grown in two different locations. Helia 34:129-138. [Google Scholar]
  19. Astiz, V., and Hernández, L.F. (2013). Pollen production in sunflower (Helianthus annuus L.) is affected by air temperature and relative humidity during early reproductive growth. Phyton 82:297-302. [Google Scholar]
  20. Bermann, B., Ginzo, H.D. y Soriano, A. (1969). Eco-fisiología del maíz I: Relaciones entre la economía del agua y el crecimiento en plantas de maíz con riego y sin riego. RIA 6:35-64. [Google Scholar]
  21. Bordoy, I.N., Verneri, J.M., Quiroz, F. and Dosio, G. (2016). Two simple models including the source/sink ratio to explain black stem by Phoma macdonaldii in sunflower. Proceedings of the sixteenth International Sunflower Conference of the International Sunflower Assoc., Edirne. [Google Scholar]
  22. Bustos-Korts, D., Boer, M.P., Layton, J., Gehringer, A., Tang, T., Wehrens, R., Messina, C., de la Vega, A.J., and van Eeuwijk, F.A. (2022). Identification of environment types and adaptation zones with self-organizing maps; applications to sunflower multi-environment data in Europe. Theor. Appl. Gen. 135:2059-2082. [Google Scholar]
  23. Carrera, C. S., Savin, R., and Slafer, G. A. (2023). Critical period for yield determination across grain crops.Trends Plant Sci. [Google Scholar]
  24. Calviño, P., Sadras, V., Redolatti, M., and Canepa, M. (2004). Yield responses to narrow rows as related to interception of radiation and water deficit in sunflower hybrids of varying cycle. Field Crops Res. 88:261-267. [Google Scholar]
  25. Cantagallo, J.E., Chimenti, C.A., and Hall, A.J. (1997). Number of seeds per unit area in sunflower correlates well with a photothermal quotient. Crop Sci. 37:1780-1786. [Google Scholar]
  26. Cantagallo, J.E. and Hall, A.J. (2002). Seed number in sunflower as affected by light stress during the floret differentiation interval. Field Crops Res.74:173-181. [Google Scholar]
  27. Cantagallo, J.E., Medan, D., and Hall, A.J. (2004). Grain number in sunflower as affected by shading during floret growth, anthesis and grain setting. Field Crops Res. 85: 191-202. [Google Scholar]
  28. Cárcova, J., Abeledo, L. and López Pereira, M. (2003). Análisis de la generación del rendimiento: crecimiento, partición y componentes. En: Satorre, E.H., Benech Arnold, R., Slafer, G.A., de la Fuente, E.B., Miralles, D.J., Otegui, M.E. and Savin, R. (Eds.). Producción de Granos: Bases funcionales para su manejo. Editorial Facultad de Agronomía, Buenos Aires, pp. 83-101. [Google Scholar]
  29. Cassman, K.G., Dobermann, A., and Walters, D.T. (2002). Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO: J. Hum. Environ. 31:132-140. [Google Scholar]
  30. Castillo, F.M., Vásquez, S.C., and Calderini, D.F. (2017). Does the pre-flowering period determine the potential grain weight of sunflower? Field Crops Res. 212:23-33. [Google Scholar]
  31. Castillo, F.M., Canales, J., Claude, A., and Calderini, D.F. (2018). Expansin genes expression in growing ovaries and grains of sunflower are tissue-specific and associate with final grain weight. BMC Plant Biol. 18:1-14. [Google Scholar]
  32. Castaño, F.D. (2018). The sunflower crop in Argentina: past, present and potential future. OCL 25:D105. [Google Scholar]
  33. Chapman, S.C. and de la Vega, A.J. (2002). Spatial and seasonal effects confounding interpretation of sunflower yields in Argentina. Field Crops Res. 73:107-120. [Google Scholar]
  34. Chimenti, C.A. and Hall, A.J. (1993). Genetic variation and changes with ontogeny of osmotic adjustment in sunflower (Helianthus annuus L.). Euphytica 71:201-210. [Google Scholar]
  35. Chimenti, C.A. and Hall, A.J. (1994). Responses to water stress of the apoplastic water fraction and the bulk modulus of elasticity in sunflower (Helianthus annuus L.) genotypes of contrasting capacity for osmotic adjustment. Plant Soil, 166:101-107. [Google Scholar]
  36. Chimenti, C.A. and Hall, A.J. (2001). Grain number responses to temperature during floret differentiation in sunflower. Field Crops Res. 72:177-184. [Google Scholar]
  37. Chimenti, C.A., Hall, A.J. and Lopez, M.S. (2001). Embryo growth rate and duration in sunflower as affected by temperature. Field Crops Res. 69:81-88. [Google Scholar]
  38. Chimenti, C.A., Pearson, J. and Hall, A.J. (2002). Osmotic adjustment and yield maintenance under drought in sunflower. Field Crops Res. 75:235-246. [Google Scholar]
  39. Chimenti, C.A., Marcantonio, M., and Hall, A.J. (2006). Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L.) in both early growth and flowering phases. Field Crops Res. 95:305-315. [Google Scholar]
  40. Coll, L., Cerrudo, A., Rizzalli, R., Monzon, J.P. and Andrade, F.H. (2012). Capture and use of water and radiation in summer intercrops in the south-east Pampas of Argentina. Field Crops Res. 134:105-113. [Google Scholar]
  41. Connor, D.J. and Sadras, V.O. (1992). Physiology of yield expression in sunflower. Field Crops Res. 30:333-389. [Google Scholar]
  42. Connor, D.J., Hall, A.J. and Sadras, V.O. (1993). Effect of nitrogen content on the photosynthetic characteristics of sunflower leaves. Aust. J. Plant Physiol. 20:251-263. [Google Scholar]
  43. Connor, D.J. and Hall, A.J. (1997). Sunflower physiology. In: Schneiter, A.A. (Ed.) Sunflower Technology and Production, Agronomy, Monograph 35, American Society of Agronomy, Madison, pp. 113-182. [Google Scholar]
  44. Connor, D.J., Sadras, V.O. and Hall, A.J. (1995). Canopy nitrogen distribution and the photosynthetic performance of sunflower crops during grain filling - a quantitative analysis. Oecologia 101:274-281. [Google Scholar]
  45. Creus, C., Bazzalo, M.E., Grondona, M., Andrade, F.H. and León, A.J. (2007). Disease expression and ecophysiological yield components in sunflower isohybrids with and without Verticillium dahliae resistance. Crop Sci. 47:703-708. [Google Scholar]
  46. Dardanelli, J.L., Bachmeier, O.A., Sereno, R. and Gil, R. (1997). Rooting depth and soil water extraction patterns of different crops in a silty loam haplustoll. Field Crops Res. 54:29-38. [Google Scholar]
  47. Dardanelli, J.L., Calmon, M.A., Jones, J.W., Andriani, J.M., Diaz, M.P. and Collino, D.J. (2003). Use of a crop model to evaluate soil impedance and root clumping effects on soil water extraction in three Argentine soils. Trans. ASAE 46:1265-1275. [Google Scholar]
  48. Dardanelli, J.L., Ritchie, J.T., Calmon, M and Collino, D.J. (2004). An empirical model for root water uptake. Field Crops Res. 87:59-71. [Google Scholar]
  49. Diovisalvi, N., Reussi Calvo, N., Izquierdo, N., Echeverría, H., Divito, G. A., and García, F. (2018). Effects of genotype and nitrogen availability on grain yield and quality in sunflower. Agron. J. 110:1532-1543. [Google Scholar]
  50. de La Vega, A.J., Chapman, S.C., and Hall, A.J. (2001). Genotype by environment interaction and indirect selection for yield in sunflower: I. Two-mode pattern analysis of oil and biomass yield across environments in Argentina. Field Crops Res. 72:17-38. [Google Scholar]
  51. de la Vega A.J., and Chapman, S.C. (2001). Genotype by environment interaction and indirect selection for yield in sunflower II. Three-mode principal component analysis of oil and biomass yield across environments in Argentina. Field Crops Res. 72:39-50. [Google Scholar]
  52. de la Vega, A.J., Hall, A.J. and Kroonenberg, P.M. (2002). Investigating the physiological bases of predictable and unpredictable genotype by environment interactions using three-mode pattern analysis. Field Crops Res. 78:165-183. [Google Scholar]
  53. de la Vega, A.J. and Hall, A.J. (2002a). Effects of planting date, genotype and their interaction on sunflower yield. I. Determinants of oil-corrected grain yield. Crop Sci. 42:1191-1201. [Google Scholar]
  54. de la Vega, A.J. and Hall, A.J. (2002b). Effects of planting date, genotype and their interaction on sunflower yield. II. Components of oil yield. Crop Sci. 42:1202-1210. [Google Scholar]
  55. de La Vega, A.J., and Chapman, S.C. (2006a). Defining sunflower selection strategies for a highly heterogeneous target population of environments. Crop Sci. 46:136-144. [Google Scholar]
  56. de La Vega, A.J., and Chapman, S.C. (2006b). Multivariate analyses to display interactions between environment and general or specific combining ability in hybrid crops. Crop Sci. 46:957-967. [Google Scholar]
  57. de la Vega, A.J., De Lacy, I.H., and Chapman, S.C. (2007a). Changes in agronomic traits of sunflower hybrids over 20 years of breeding in central Argentina. Field Crops Res. 100:73-81. [Google Scholar]
  58. de la Vega, A.J., DeLacy, I.H., and Chapman, S.C. (2007b). Progress over 20 years of sunflower breeding in central Argentina. Field Crops Res. 100:61-72. [Google Scholar]
  59. de la Vega, A.J., and Chapman, S.C. (2010). Mega‐environment differences affecting genetic progress for yield and relative value of component traits. Crop Sci. 50:574-583. [Google Scholar]
  60. de la Vega, A.J., Cantore, M.A., Sposaro, M.M., Trápani, N., López Pereira, M., and Hall, A.J. (2011). Canopy stay-green and yield in non-stressed sunflower. Field Crops Res. 121:175-185. [Google Scholar]
  61. Dosio, G.A.A., Aguirrezábal, L.A.N., Andrade, F.H. and Pereyra, V.R. (2000). Solar radiation intercepted during seed filling and oil production in two sunflower hybrids. Crop Sci. 40:1637-1644. [Google Scholar]
  62. Dosio, G.A.A., Rey, H., Lecoeur, J., Izquierdo, N.G., Aguirrezábal, L.A.N., Tardieu, F., and Turc, O., (2003). A whole-plant analysis of the dynamics of expansion of individual leaves of two sunflower hybrids J. Exp. Bot. 2003 54:2541-2552. [Google Scholar]
  63. Dosio, G.A., Tardieu, F., and Turc, O. (2011). Floret initiation, tissue expansion and carbon availability at the meristem of the sunflower capitulum as affected by water or light deficits. New Phytol. 189:94-105. [Google Scholar]
  64. Dosio, G.A., Izquierdo, N.G., Bordoy, E.I.N., and Aguirrezábal, L.A. (2020). Leaf senescence did not account for variations in grain and oil yield observed in sunflower under radiation limiting conditions. Agric. For. Meteorol. 291:108032. [Google Scholar]
  65. Eastin, J.D., Haskins, F.A., Sullivan, C.Y. and van Bavel, C.H.M. (1969). Physiological aspects of crop yield. ASA-CSSA, Madison. [Google Scholar]
  66. Echarte, M.M., Angeloni, P., Jaimes, F., Tognetti, J., Izquierdo, N.G., Valentinuz, O., and Aguirrezábal, L.A. (2010). Night temperature and intercepted solar radiation additively contribute to oleic acid percentage in sunflower oil. Field Crops Res. 119:27-35. [Google Scholar]
  67. Echarte, L., Della Maggiora, A., Cerrudo, D., Gonzalez, V. H., Abbate, P., Cerrudo, A., Sadras, V.O. and Calvino, P. (2011). Yield response to plant density of maize and sunflower intercropped with soybean. Field Crops Res. 121: 423-429. [Google Scholar]
  68. Echarte, M.M., Alberdi, I., and Aguirrezábal, L.A. (2012). Post‐flowering assimilate availability regulates oil fatty acid composition in sunflower grains. Crop Sci. 52:818-829. [Google Scholar]
  69. Echarte, M.M., Puntel, L.A., and Aguirrezabal, L.A. (2013). Assessment of the critical period for the effect of intercepted solar radiation on sunflower oil fatty acid composition. Field Crops Res. 149:213-222. [Google Scholar]
  70. Echarte, L., Echarte, M.M., Cerrudo, D., González, V.H., Alfonso, C., Cambareri, M., Hernandez, M.D., Nagore, M.L., and Della Maggiora, A. (2020). Sunflower evapotranspiration and water use efficiency in response to plant density. Crop Sci. 60:357-366. [Google Scholar]
  71. Evans, L.T. (1975). Crop Physiology: Some case histories. Cambridge University Press, Cambridge. [Google Scholar]
  72. Fonts, C., Andrade, F.H., Grondona, M., Hall, A., and Leon, A.J. (2008). Phenological Characterization of Near‐Isogenic Sunflower Families Bearing Two QTLs for Photoperiodic Response. Crop Sci. 48:1579-1585. [Google Scholar]
  73. French, R.J., and Schultz, J.E. (1984). Water use efficiency of wheat in a Mediterranean-type environment. I. The relation between yield, water use and climate. Aust. J. Agric. Res. 35:743-764. [Google Scholar]
  74. Gallagher, J.N., and Biscoe, P.V. (1978). Radiation absorption, growth and yield of cereals. J. Agric. Sci. 91:47-60. [Google Scholar]
  75. Gambín, B.L., and Borrás, L. (2010). Resource distribution and the trade‐off between seed number and seed weight: a comparison across crop species. Ann. Appl. Biol. 156:91-102. [Google Scholar]
  76. Goldenberg, M. G., Ossa, F. A. S., Burian, A., Seppelt, R., Satorre, E. H., Martini, G. D., and Garibaldi, L. A. (2023). Landscape configuration is an important predictor of sunflower yield in the Argentinean Pampas Region. Ecol. Austral. 33(1): 170-177. [Google Scholar]
  77. González Belo, R. Velasco, L., Nolasco, S.M., and Izquierdo, N.G. (2018). Dynamics of phytosterols content and concentration in sunflower grains. Crop Pasture Sci. 69:724-732. [Google Scholar]
  78. González Belo, R., Velasco, L., Nolasco, S.M., & Izquierdo, N.G. (2019). Oil phytosterol concentration in sunflower presents a dilution response with oil weight per grain. JAOCS 96:1115-1123. [Google Scholar]
  79. Gutierrez, A., Carrera, A. Basualdo, J., Rodriguez, R., Cantamutto, M. and Poverene, M. (2010) Gene flow between cultivated sunflower and Helianthus petiolaris (Asteraceae). Euphytica 172:67–76. [Google Scholar]
  80. Grassini, P., Indaco, G.V., Pereira, M.L., Hall, A.J., and Trápani, N. (2007). Responses to short-term waterlogging during grain filling in sunflower. Field Crops Res.101:352-363. [Google Scholar]
  81. Grassini, P., Hall, A.J., & Mercau, J.L. (2009). Benchmarking sunflower water productivity in semiarid environments. Field Crops Res.110:251-262. [Google Scholar]
  82. Hall, A.J., Ginzo, H.D., Lemcoff, J.H., and Soriano, A. (1980). The influence of drought during pollen-shedding on flowering, growth and yield of maize. J. Agronomy & Crop Science, 149:287-298 [Google Scholar]
  83. Hall, A.J., Chimenti, C.A., Vilella, F. and Freier, G. (1985). Timing of water stress effects on yield components in sunflower. Proceedings of the eleventh International Sunflower Conference of the International Sunflower Assoc., Mar del Plata. [Google Scholar]
  84. Hall, A.J., Connor, D.J. and Whitfield, D.M. (1989). Contribution of pre-anthesis assimilates to grain filling in irrigated and water stressed sunflower crops. I. Estimates using labelled carbon. Field Crops Res. 20:95-112. [Google Scholar]
  85. Hall, A.J., Whitfield, D.M. and Connor, D.J. (1990a). Contribution of pre-anthesis assimilates to grain-filling in irrigated and water-stressed sunflower crops. II. Estimates from a carbon budget. Field Crops Res. 24:273-94. [Google Scholar]
  86. Hall, A.J., Connor, D.J. and Whitfield, D.W. (1990b). Root respiration during grain filling in sunflower: The effects of water stress. Plant Soil: 121:57-66. [Google Scholar]
  87. Hall, A.J., Connor, D.J. and Sadras, V.O. (1995). Radiation-use efficiency of sunflower crops: Effects of specific leaf nitrogen and ontogeny. Field Crops Res. 41:65-77. [Google Scholar]
  88. Hall, A.J. (2001). Sunflower ecophysiology: some unresolved issues. OCL 8:15-21. [Google Scholar]
  89. Hall, A.J. (2004). Infancia y adolescencia de la ecofisiología de los cultivos en la Argentina: el caso girasol. Anales de la Academia Nacional de Agronomía y Veterinaria, tomo LVIII:46-63. [Google Scholar]
  90. Hall, A.J., and Sadras, V.O. 2009. Whither crop physiology? In: Sadras, V.O. and Calderini, D.F. (Eds.), Crop Physiology (First Edition): Applications for Genetic Improvement and Agronomy, Academic Press (Elsevier), San Diego, pp. 545-570. [Google Scholar]
  91. Hall, A.J., Sposaro, M.M., and Chimenti, C.A. (2010). Stem lodging in sunflower: variations in stem failure moment of force and structure across crop population densities and post-anthesis developmental stages in two genotypes of contrasting susceptibility to lodging. Field Crops Res.116: 46-51. [Google Scholar]
  92. Hall, A.J., and Richards, R.A. (2013). Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crops Res. 143:18-33. [Google Scholar]
  93. Hall, A.J., Feoli, C., Ingaramo, J., and Balzarini, M. (2013). Gaps between farmer and attainable yields across rainfed sunflower growing regions of Argentina. Field Crops Res. 143:119-129. [Google Scholar]
  94. Hall, A.J., and Sinclair, T.R. (2015). Rooting front and water uptake: what you see and get may differ. Agron. J. 107:1766-1770. [Google Scholar]
  95. Hall, A.J. (2016). La ecofisiología de cultivos extensivos en Argentina: su exteriorización en trabajos publicados 1980-2015 (y en algunos otros indicadores de actividad). In: Taleisnik, E. and Golberg, A.D. (Eds.), ¡y nos fuimos por las ramas! La Fisiología Vegetal en la Argentina desde sus orígenes hasta 2016, Asociación Argentina de Fisiología Vegetal, Córdoba, pp. 81-88. [Google Scholar]
  96. Hernández, L.F. and Orioli, G.A. (1985a). Imbibition and germination rates of sunflower (Helianthus annuus L.) seeds according to fruit size. Field Crops Res. 10:355-360. [Google Scholar]
  97. Hernández, L.F. and Orioli, G.A. (1985b). Relationships between root permeability to water, leaf conductance and transpiration rate in sunflower (Helianthus annuus L.) cultivars. Plant Soil. 85:229-235. [Google Scholar]
  98. Hernández, L.F. (2010). Leaf angle and light interception in sunflower (Helianthus annuus L.). Role of the petiole's mechanical and anatomical properties. Phyton 79:109-115. [Google Scholar]
  99. Hernández, L.F. and Pellegrini, C.N. (2019). Pattern analysis of visible faulty fruits in capitula: A case in cultivated sunflower (Helianthus annuus L.). Int. J. Plant Biol. 10:8317. [Google Scholar]
  100. Izquierdo, N., Aguirrezábal, L., Andrade, F. and Pereyra, V. (2002). Night temperature affects fatty acid composition in sunflower oil depending on the hybrid and the phenological stage. Field Crops Res. 77:115-126. [Google Scholar]
  101. Izquierdo, N.G., Aguirrezábal, L.A., Andrade, F.H. and Cantarero, M.G. (2006). Modeling the response of fatty acid composition to temperature in a traditional sunflower hybrid. Agron. J. 98:451-461. [Google Scholar]
  102. Izquierdo, N.G., Mascioli, S., Aguirrezábal, L.A.N. and Nolasco, S.M. (2007). Temperature influence during seed filling on tocopherol concentration in a traditional sunflower hybrid. Grasas y Aceites, 58:170-178. [Google Scholar]
  103. Izquierdo, N.G. and Aguirrezábal, L.A.N. (2008). Genetic variability in the response of fatty acid composition to minimum night temperature during grain filling in sunflower. Field Crops Res. 106:116-125. [Google Scholar]
  104. Izquierdo, N.G., Dosio, G.A.A., Cantarero, M., Luján, J., and Aguirrezábal, L.A.N. (2008). Weight per grain, oil concentration, and solar radiation intercepted during grain filling in black hull and striped hull sunflower hybrids. Crop Sci. 48:688-699. [Google Scholar]
  105. Izquierdo, N.G., Aguirrezábal, L.A.N., Andrade, F.H., Geroudet, C., Valentinuz, O. and Iraola, M.P. (2009). Intercepted solar radiation affects oil fatty acid composition in crop species. Field Crops Res. 114:66-74. [Google Scholar]
  106. Izquierdo, N.G., Nolasco, S., Mateo, C., Santos, D. and Aguirrezábal, L.A.N. (2012). Relationship between oil tocopherol concentration and oil weight per grain in several crop species. Crop Pasture Sci. 62:1088-1097. [Google Scholar]
  107. Izquierdo, N.G., Aguirrezábal, L.A.N., Martínez-Force, E., Garcés, R., Paccapelo, V., Andrade, F., Reid, R. and Zambelli, A. (2013). Effect of growth temperature on the high stearic and high stearic-high oleic sunflower traits. Crop Pasture Sci. 64:18-25. [Google Scholar]
  108. Lambers, H., Chapin III, F.S. and Pons, T.L. (2008). Plant physiological ecology (Second Edition) Springer, New York. [Google Scholar]
  109. Lechner, L., Pereyra-Irujo, G.A., Granier, C., and Aguirrezábal, L.A. (2008). Rewatering plants after a long water-deficit treatment reveals that leaf epidermal cells retain their ability to expand. Ann. Bot. 101:1007–1015. [Google Scholar]
  110. León, A.J., Andrade, F.H. and Lee, M. (2000). Genetic mapping of factors affecting quantitative variation for flowering in sunflower. Crop Sci. 40:404-407. [Google Scholar]
  111. León, A.J., Andrade, F.H. and Lee, M. (2003). Genetic analysis of seed -oil concentrations across generations and environments in sunflower (Helianthus annuus L.). Crop Sci. 43:135-140. [Google Scholar]
  112. Libenson, S., Rodriguez, V., López Pereira, M., Sánchez, R.A. and Casal, J. J. (2002). Low red to far-red ratios reaching the stem reduce grain yield in sunflower. Crop Sci. 42:1180-1185. [Google Scholar]
  113. Lindström, L.I., Pellegrini, C.N., Aguirrezábal, L.A.N. and Hernández, L.F. (2006). Growth and development of sunflower fruits under shade during pre and early post-anthesis period. Field Crops Res. 96:151-159. [Google Scholar]
  114. Lindström, L.I., Pellegrini, C.N., and Hernández, L.F. (2007). Histological development of the sunflower fruit pericarp as affected by pre-and early post-anthesis canopy shading. Field Crops Res. 103:229-238. [Google Scholar]
  115. Lindström, L.I. and Hernández, L.F. (2015). Developmental morphology and anatomy of the reproductive structures in sunflower (Helianthus annuus): a unified temporal scale. Botany 93:307-316. [Google Scholar]
  116. Lisanti, S., Hall, A.J., and Chimenti, C.A. (2013). Influence of water deficit and canopy senescence pattern on Helianthus annuus (L.) root functionality during the grain-filling phase. Field Crops Res. 154:1-11. [Google Scholar]
  117. López Pereira, M., Sadras, V.O. and Trápani, N. (1999a). Genetic improvement of sunflower in Argentina between 1930 and 1995. I. Yield and its components. Field Crops Res. 62:157-166. [Google Scholar]
  118. López Pereira, M., Sadras, V.O. and Trápani, N. (1999b). Genetic improvement of sunflower in Argentina between 1930 and 1995. II. Phenological development, growth and source-sink relationship. Field Crops Res. 63:247-254. [Google Scholar]
  119. López Pereira M., Sadras V.O. and Trápani N. (2000). Genetic improvement of sunflower in Argentina between 1930 and 1995. III. Dry matter partitioning and grain composition. Field Crops Res. 67:215-221. [Google Scholar]
  120. López Pereira, M., Berney, A., Hall, A.J. and Trápani, N. (2008). Contribution of pre-anthesis photoassimilates to grain yield: Its relationship with yield in Argentine sunflower cultivars released between 1930 and 1995. Field Crops Res.105:88-96. [Google Scholar]
  121. López Pereira, M., Sadras, V.O., Batista, W., Casal, J.J. and Hall, A.J. (2017). Light-mediated self-organization of sunflower stands increases oil yield in the field. PNAS 114:7975-7980. [Google Scholar]
  122. López Pereira, M. and Hall, A.J. (2019). Sunflower oil yield responses to plant population and row spacing: Vegetative and reproductive plasticity. Field Crops Res. 230:17-30. [Google Scholar]
  123. López-Pereira, M., Connor, D.J. and Hall, A.J. (2020). Intercepted radiation and radiation-use efficiency in sunflower crops grown at conventional and wide inter-row spacings: Measurements and modeled estimates of intercepted radiation. Field Crops Res. 246:107684. [Google Scholar]
  124. López-Pereira, M., Casal, J.J., and Hall, A.J. (2022). Is the tolerance of sunflower floret differentiation to crop density associated with the stem growth and with the oil yield response to density? Field Crops Res. 275:108362. [Google Scholar]
  125. Lúquez, J.E., Aguirrezabal, L.A.N., Agüero, M.E. and Pereyra, V.R. (2002). Stability and adaptability of cultivars in non‐balanced yield trials. Comparison of methods for selecting ‘high oleic’ sunflower hybrids for grain yield and quality. J. Agron. Crop Sci. 188:225-234. [Google Scholar]
  126. Mangieri, M.A., Mantese, A.I., Schürmann, A.A. and Chimenti, C.A. (2016). Effects of ethephon on anatomical changes in sunflower (Helianthus annuus L.) stems associated with lodging. Crop Pasture Sci. 67:988-999. [Google Scholar]
  127. Mangieri, M.A., Hall, A.J., Striker, G.G. and Chimenti, C.A. (2017). Cytokinins: A key player in determining differences in patterns of canopy senescence in Stay-Green and Fast Dry-Down sunflower (Helianthus annuus L.) hybrids. Eur. J. Agron. 86:60-70. [Google Scholar]
  128. Mangieri, M.A. (2011). El papel de las citocininas en el rompecabezas de la senescencia foliar durante el llenado de frutos en girasol (Helianthus annuus L.). Ph. D. thesis. Buenos Aires, Facultad de Agronomía, Universidad de Buenos Aires. [Google Scholar]
  129. Mangieri, M.A., Hall, A.J. and Chimenti, C.A. (2020). Cytokinin dynamics in xylem sap and leaves of fruiting and de-fruited sunflower hybrids of contrasting post-anthesis canopy senescence patterns during flowering and grain-filling. Plant Soil 448:165-181. [Google Scholar]
  130. Mantese, A.I., Medan, D. and Hall, A.J. (2006). Achene structure, development and lipid accumulation in sunflower cultivars differing in oil content at maturity. Ann. Bot. 97:999-1010. [Google Scholar]
  131. Manzur, M.E., Hall, A.J. and Chimenti, C.A. (2014). Root lodging tolerance in Helianthus annuus (L.): associations with morphological and mechanical attributes of roots. Plant Soil, 381:71-83. [Google Scholar]
  132. Martínez, R.D., Izquierdo, N.G., Belo, R.G., Aguirrezábal, L.A., Andrade, F. and Reid, R. (2012). Oil yield components and oil quality of high stearic-high oleic sunflower genotypes as affected by intercepted solar radiation during grain filling. Crop Pasture Sci. 63:330-337. [Google Scholar]
  133. Mercau, J.L., Sadras, V.O., Satorre, E.H., Messina, C., Balbi, C., Uribelarrea, M. and Hall, A.J. (2001). On-farm assessment of regional and seasonal variation in sunflower yield in Argentina. Agric. Syst. 67:83-103. [Google Scholar]
  134. Miralles, D.J., Aguirrezábal, L.A.N., Otegui, M.E., Kruk, B.C. and Izquierdo N. (2010). Avances en Ecofisiología de Cultivos de Granos. Editorial Facultad de Agronomía. Buenos Aires. [Google Scholar]
  135. Messina, C.D, Hansen, J.W. and Hall, A.J. (1999). Land allocation conditioned on ENSO phases in the Pampas of Argentina. Agric. Syst. 60:197-212. [Google Scholar]
  136. Milthorpe, F.L. and Moorby, J. (1974). An introduction to crop physiology. Cambridge University Press, Cambridge. [Google Scholar]
  137. Montecchia, J.F., Fass, M.I., Cerrudo, I., Quiroz, F.J., Nicosia, S., Maringolo, C.A., Di Rienzo, J., Troglia, C., Hopp, H.E., Escande, A., González, J., Álvarez, D., Heinz, R.A., Lia, V.V. and Paniego, N. B. (2021). On-field phenotypic evaluation of sunflower populations for broad-spectrum resistance to Verticillium leaf mottle and wilt. Sci. Rep. 11:11644. [Google Scholar]
  138. Monzón, J.P., Calviño, P.A., Sadras, V.O., Zubiaurre, J.B. and Andrade, F.H. (2018). Precision agriculture based on crop physiological principles improves whole-farm yield and profit: A case study. Eur. J. Agron. 99:62-71. [Google Scholar]
  139. Morales, M. E., Allegrini, M., Basualdo, J., Iocoli, G. A., Villamil, M. B., and Zabaloy, M. C. (2024). Winter cover crop suppression methods influence on sunflower growth and rhizosphere communities. Front. Microbiol, 15: 1405842. [Google Scholar]
  140. Nolasco, S.M., Aguirrezábal, L.A.N. and Crapiste, G.H. (2004). Tocopherol oil concentration in field‐grown sunflower is accounted for by oil weight per seed. JAOCS 81:1045-1051. [Google Scholar]
  141. Nolasco, S.M., Aguirrezábal, L.A.N., Lúquez, J. and Mateo, C. (2006). Variability in oil tocopherol concentration and composition of traditional and high oleic sunflower hybrids (Helianthus annuus L.) in the Pampean region (Argentina). Grasas y Aceites 57:260-269. [Google Scholar]
  142. Nuñez Bordoy, I.E., Quiroz, F.J. and Dosio, G.A.A. (2018). Increases in the source to sink ratio related to a higher carbohydrate concentration reduce phoma black stem in sunflower. Eur. J. Plant Pathol. 150:623-637. [Google Scholar]
  143. Pereyra-Irujo, G.A. and Aguirrezábal, L.A.N. (2007). Sunflower yield and oil quality interactions and variability: Analysis through a simple simulation model. Agric. Forest Meteorol. 143:252-265. [Google Scholar]
  144. Pereyra-Irujo, G.A., Velázquez, L., Lechner, L. and Aguirrezábal, L.A.N. (2008). Genetic variability for leaf growth rate and duration under water deficit in sunflower: analysis of responses at cell, organ, and plant level. J. Exp. Bot. 59:2221-2232. [Google Scholar]
  145. Pereyra-Irujo, G.A., Izquierdo, N.G., Covi, M., Nolasco, S.M., Quiroz, F. and Aguirrezábal, L.A.N. (2009). Variability in sunflower oil quality for biodiesel production: a simulation study. Biomass Bioenergy 33:459-468. [Google Scholar]
  146. Ploschuk, E.L. and Hall, A.J. (1995). Capitulum position in sunflower affects grain temperature and duration of grain filling. Field Crops Res. 44:111-117. [Google Scholar]
  147. Ploschuk, E.L. and Hall, A.J. (1997). Maintenance respiration coefficient for sunflower grains is less than that for the entire capitulum. Field Crops Res. 49:147-157. [Google Scholar]
  148. Quiroz, F.J., Molina, J.E. and Dosio, G.A.A. (2014). Black stem by Phoma macdonaldii affected ecophysiological components that determine grain yield in sunflower (Helianthus annuus L.). Field Crops Res. 160:31-40. [Google Scholar]
  149. Rey, H., Dauzat, J., Chenu, K., Barczi, J.F., Dosio, G.A. and Lecoeur, J. (2008). Using a 3-D virtual sunflower to simulate light capture at organ, plant and plot levels: contribution of organ interception, impact of heliotropism and analysis of genotypic differences. Ann. Bot. 101:1139-1151. [Google Scholar]
  150. Reyes, M. F., Fernandez, A. R., Jodar, D. N. N., Andreoni, L., and Garibaldi, L. A. (2024). Effects of increasing honeybee densities on sunflower yield components. Ecol. Austral: 470-476. [Google Scholar]
  151. Rodriguez, I.M., Mercau, J.L., Cipriotti, P.A., Hall, A.J. and Monzon, J.P. (2023). Fine-tuning the CROPGRO-Sunflower model and its application to the quantification of crop responses to environmental and management variables. Field Crops Res. 300:108986. [Google Scholar]
  152. Rodríguez, I. M., Hall, A. J., Monzón, J. P., Mercau, J. L., Gayo, S., Pereira, M. L., ... and Cipriotti, P. A. (2024). Sunflower yield gaps and their causes in Argentina. Field Crops Res. 315: 109480. [Google Scholar]
  153. Rondanini, D., Savin, R. and Hall, A.J. (2003). Dynamics of fruit growth and oil quality of sunflower (Helianthus annuus L.) exposed to brief intervals of high temperature during grain filling. Field Crops Res. 83:79-90. [Google Scholar]
  154. Rondanini, D., Mantese, A., Savin, R. and Hall, A.J. (2006). Responses of sunflower yield and grain quality to alternating day/night high temperature regimes during grain filling: effects of timing, duration and intensity of exposure to stress. Field Crops Res. 96:48-62. [Google Scholar]
  155. Rondanini, D.P., Savin, R. and Hall, A.J. (2007). Estimation of physiological maturity in sunflower as a function of fruit water concentration. Eur. J. Agron. 26:295-309. [Google Scholar]
  156. Rondanini, D.P., Mantese, A.I., Savin, R. and Hall, A.J. (2009). Water content dynamics of achene, pericarp and embryo in sunflower: Associations with achene potential size and dry-down. Eur. J. Agron. 30:53-62. [Google Scholar]
  157. Rondanini, D.P., Borrás, L. and Savin R. (2018) Improving Grain Quality in Oil and Cereal Crops. In: Meyers R. (Ed.) Encyclopedia of Sustainability Science and Technology. Springer, New York. [Google Scholar]
  158. Rousseaux, M.C., Hall, A.J. and Sánchez, R.A. (1996). Far-red enrichment and photosynthetically active radiation level influence leaf senescence in field-grown sunflower. Physiol. Plant. 96:217-224. [Google Scholar]
  159. Rousseaux, M.C., Ballaré, C.L., Jordan, E.T. and Vierstra, R.D. (1997). Directed overexpression of PHYA locally suppresses stem elongation and leaf senescence responses to far-red radiation. Plant Cell Environ. 20:1551-1558. [Google Scholar]
  160. Rousseaux, M.C., Hall, A.J. and Sánchez, R.A. (1999.) Light environment, nitrogen content, and carbon balance of basal leaves of sunflower canopies. Crop Sci. 39:1093-1100. [Google Scholar]
  161. Rousseaux, M.C., Hall, A.J. and Sánchez, R.A. (2000). Basal leaf senescence in a sunflower (Helianthus annuus) canopy: responses to increased R/FR ratio. Physiol. Plant. 110:477-482. [Google Scholar]
  162. Ruiz, R.A. and Maddonni, G.A. (2006). Sunflower seed weight and oil concentration under different post‐flowering source‐sink ratios. Crop Sci. 46:671-680. [Google Scholar]
  163. Sadras, V.O. and Hall, A.J. (1988). Quantification of temperature, photoperiod and population effects on plant leaf area in sunflower crops. Field Crops Res.18:185-96. [Google Scholar]
  164. Sadras, V.O. and Hall, A.J. (1989). Patterns of water availability for sunflower crops in semi-arid central Argentina. A simulation-based evaluation of their interactions with cropping strategies and cultivar traits. Agric. Syst. 31:221-238. [Google Scholar]
  165. Sadras, V.O., Hall, A.J., Trapani, N.T. and Vilella, F. (1989). Dynamics of rooting and root length: leaf area relationships as affected by plant population in sunflower crops. Field Crops Res. 22:45-57. [Google Scholar]
  166. Sadras, V.O. and Connor, D.J. (1991). Physiological basis of the response of harvest index to the fraction of water transpired after anthesis. A simple model to estimate harvest index for determinate species. Field Crops Res. 26:227-239. [Google Scholar]
  167. Sadras, V.O., Whitfield, D.M., and Connor, D.J. (1991a). Transpiration efficiency in crops of semi-dwarf and standard-height sunflower. Irrig. Sci. 12:87-91. [Google Scholar]
  168. Sadras, V.O., Whitfield, D.M., and Connor, D.J. (1991b). Regulation of evapotranspiration and its partitioning between transpiration and soil evaporation by sunflower crops. A comparison between hybrids of different stature. Field Crops Res. 28:17-37. [Google Scholar]
  169. Sadras, V.O. and Villalobos, F.J. (1993a). Floral initiation, leaf initiation and leaf appearance in sunflower. Field Crops Res. 33:449-457. [Google Scholar]
  170. Sadras, V.O., Hall, A.J. and Connor, D.J. (1993b). Light-associated nitrogen distribution profiles in flowering canopies of sunflower (Helianthus annuus L.) altered during grain growth. Oecologia 95:488-494. [Google Scholar]
  171. Sadras, V.O., Villalobos, F.J. and Fereres, E. (1993c). Leaf expansion in field grown sunflower in response to soil and leaf water status. Agron. J. 8:564-570. [Google Scholar]
  172. Sadras, V.O., Villalobos, F.J., Fereres, E. and Wolfe, D.W. (1993d). Leaf responses to soil water deficits: comparative sensitivity of leaf expansion rate and leaf conductance in field-grown sunflower (Helianthus annuus L.). Plant Soil 153:189-194. [Google Scholar]
  173. Sadras, V.O. and Villalobos, F.J. (1994). Physiological characteristics related to yield improvement in sunflower (Helianthus annuus L.). In: Slafer, G. (Ed.) Genetic improvement of field crops. Marcel Dekker, New York, pp. 287-319. [Google Scholar]
  174. Sadras, V.O., and Trapani, N. (1999). Leaf expansion and phenological development: key determinants of sunflower plasticity, growth and yield. In: Smith, D.L. and Hamel, C. (Eds.). Physiological control of growth and yield in field crops. Springer-Verlag, Berlin, pp. 205-232. [Google Scholar]
  175. Sadras, V.O., Trápani, N., Pereyra, V.R., Pereira, M.L., Quiroz, F., and Mortarini, M. (2000a). Intraspecific competition and fungal diseases as sources of variation in sunflower yield. Field Crops Res. 67:51-58. [Google Scholar]
  176. Sadras, V.O., Echarte, L. and Andrade, F.H. (2000b). Profiles of leaf senescence during reproductive growth of sunflower and maize. Ann. Bot. 85:185-195. [Google Scholar]
  177. Sadras, V.O., Quiroz, F., Echarte, L., Escande, A. and Pereyra, V. R. (2000c). Effect of Verticillium dahliae on photosynthesis, leaf expansion and senescence of field-grown sunflower. Ann. Bot. 86:1007-1015. [Google Scholar]
  178. Sadras, V.O. and Calderini, D.F. (Eds.) (2009). Crop Physiology (First Edition): Applications for Genetic Improvement and Agronomy, Academic Press (Elsevier), San Diego. [Google Scholar]
  179. Sadras, V.O. and Calderini, D.F. (Eds.) (2015). Crop Physiology (Second Edition): Applications for Genetic Improvement and Agronomy, Academic Press (Elsevier), San Diego. [Google Scholar]
  180. Sandoval, M. N., Cirilo, A. G., Paytas, M. J., Zuil, S. G., and Izquierdo, N. G. (2024). Critical Periods for Waterlogging Effects on Yield and Grain Components in Sunflower (Helianthus annuus), Soybean (Glycine max) and Sorghum (Sorghum bicolor): A Comparative Study. J. Agron. Crop Sci. 210(5): e12765. [Google Scholar]
  181. Santalla, E.M., Dosio, G.A.A., Nolasco, S.M. and Aguirrezábal, L.A.N. (2002). The effects of intercepted solar radiation on sunflower (Helianthus annuus L.) seed composition from different head positions. JAOCS 79:69-74. [Google Scholar]
  182. Satorre, E.H., Benech Arnold, R., Slafer, G.A., de la Fuente, E.B., Miralles, D.J., Otegui, M.E. and Savin, R. (Eds.) (2013). Producción de Granos: Bases funcionales para su manejo. Editorial Facultad de Agronomía, Buenos Aires. [Google Scholar]
  183. Serraj, R. and Sinclair, T.R. (2002). Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Env. 25:333-341. [Google Scholar]
  184. Slafer, G.A., Hall, A.J. and Miralles, D.J. (2018). Aportes argentinos a la ecofisiología de cultivos. Agronomia y Ambiente 38:137-146. [Google Scholar]
  185. Sposaro, M.M., Chimenti, C.A. and Hall, A.J. (2008). Root lodging in sunflower. Variations in anchorage strength across genotypes, soil types, crop population densities and crop developmental stages. Field Crops Res.106:179-186. [Google Scholar]
  186. Taleisnik, E. and Golberg, A.D. (2016) ¡y nos fuimos por las ramas! La Fisiología Vegetal en la Argentina desde sus orígenes hasta 2016, Asociación Argentina de Fisiología Vegetal, Córdoba. [Google Scholar]
  187. Thevenon, M.A., Dosio, G.A.A., Cardinali, F.J. and Aguirrezábal, L.A.N. (2000). Yield of different head positions of sunflower (Helianthus annuus L.) and its relationship with vascularization. Helia 23:85-96. [Google Scholar]
  188. Tovar Hernández, S., Carciochi, W.D., Diovisalvi, N.V., Izquierdo, N., Wyngaard, N., Barbieri, P. and Reussi Calvo, N. I. (2023). Does nitrogen fertilization rate, timing, and splitting affect sunflower yield and grain quality? Crop Sci. 63:1525-1540. [Google Scholar]
  189. Tollenar, M. and Lee, E.A. (2002) Yield potential, yield stability and stress tolerance in maize. Field Crops Res. 75:161-169. [Google Scholar]
  190. Trapani, N., Hall, A.J., Sadras, V.O. and Vilella, F. (1992). Ontogenetic changes in radiation use efficiency of sunflower (Helianthus annuus L.) crops. Field Crops Res. 29:301-315. [Google Scholar]
  191. Trapani, N., Hall, A.J. and Villalobos, F.J. (1994). Pre-anthesis partitioning of dry matter in sunflower (Helianthus annuus L.) crops. Field Crops Res. 37:235-246. [Google Scholar]
  192. Trápani, N. and Hall, A.J. (1996). Effects of level of insertion and nitrogen supply on the expansion of leaves of field-grown sunflower (Helianthus annuus L.). Plant Soil 184:331-340. [Google Scholar]
  193. Trapani, N., Hall, A.J., and Weber, M. (1999). Effects of constant and variable nitrogen supply on sunflower (Helianthus annuus L.) leaf cell number and size. Ann. Bot. 84:599-606. [Google Scholar]
  194. Vega, C.R.C., Andrade, F.H., Sadras, V.O. and Uhart, S.A. (2000). Reproductive allometry in soybean, maize and sunflower. Ann. Bot. 85:461-468. [Google Scholar]
  195. Vega, C.R.C., Andrade, F.H., Sadras, V.O. (2001a). Reproductive partitioning and seed set efficiency in grain crops. Field Crops Res. 72:163-175. [Google Scholar]
  196. Vega, C.R.C., Andrade, F.H., Sadras, V.O., Uhart, S.A. and Valentinuz, O.R. (2001b). Seed number as a function of growth. A comparative study in soybean, sunflower and maize. Crop Sci. 41:748-754. [Google Scholar]
  197. Vega, C.R.C., and Sadras, V.O. (2003). Size-dependent growth and the development of inequality in maize, sunflower and soybean. Ann. Bot. 91:795-805. [Google Scholar]
  198. Velasco, L., Pérez-Vich, B. and Fernández-Martínez, J.M. (2004). Grain quality in oil crops. En Benech Arnold, R.L. and Sánchez, R.A. (eds.) Seed physiology: Applications to agriculture. Food Products Press, New York NY, U.S.A. [Google Scholar]
  199. Villalobos, F.J. and J.T. Ritchie. (1992). The effect of temperature on leaf emergence rates of sunflower genotypes. Field Crops Res. 29:37-46. [Google Scholar]
  200. Villalobos, F.J., Sadras, V.O., Soriano, A., and Fereres, E. (1994). Planting density effects on dry matter partitioning and productivity of sunflower genotypes. Field Crops Res. 36:1-11. [Google Scholar]
  201. Villalobos, F.J., Hall, A.J., Ritchie, J.T. and Orgaz, F. (1996). OILCROP-SUN: A development, growth and yield model of the sunflower crop. Agron. J. 88:403-415. [Google Scholar]
  202. Whitfield, D.M., Connor, D.J. and Hall, A.J. (1989). Carbon dioxide balance of sunflower (Helianthus annuus L.) subjected to water stress during grain filling. Field Crops Res. 20:65-80. [Google Scholar]
  203. Wilson, J.W. and Rose, C.W. (1967) The Components of leaf water potential I. Osmotic and matric potentials. Aust. J. Biol. Sci. 20:329-348. [Google Scholar]