Research article    |    Open Access
Helia 2025, Vol. 48(82) 24-39

The Efficacy of Plant Immune Inducer Wolfsonian on Controlling Sunflower White Mold Caused by Sclerotinia sclerotiorum

Wenbing Zhang, Xinbo Wang, Tie Li, Baizhen Hao, Yuping Zhao, Gen Fan, Qinglin Meng, Jian Zhang, Jun Zhao

pp. 24 - 39   |  DOI: https://doi.org/10.29329/helia.2025.1334.2

Publish Date: June 30, 2025  |   Single/Total View: 0/0   |   Single/Total Download: 0/0


Abstract

Sunflower White Mold (SWM), caused by Sclerotinia sclerotiorum, is a major threat to sunflower production. Traditional control methods have limited efficacy, and the pathogen often develops resistance to chemicals, making induced resistance mechanisms a promising alternative. This study investigated the efficacy of Wolfsonian, a plant immune inducer, in controlling SWM through foliar spraying and root irrigation at varying concentrations. Results showed significant reductions in disease incidence and index for both treatments, with root irrigation achieving 35.83% disease incidence and 19.52 disease index, and foliar spraying showing 36.94% incidence and 21.88 index. The average control effects were 65.86% and 61.91%, respectively, with no significant differences among concentrations within treatments. Wolfsonian also promoted sunflower growth, increasing plant height and stem diameter. Field trials confirmed its efficacy, with root irrigation reducing disease incidence to 12.22% and a control effect of 52.49%. Physiological and molecular analyses revealed that Wolfsonian induced total phenol content and H2O2 concentration, peaking at 48 and 72 hours post-inoculation (hpi), respectively. Activities of ROS scavenging enzymes (POD, SOD, PAL) increased, peaking at 72 hpi before declining. Additionally, Wolfsonian significantly induced transcripts of genes related to SA, JA, and ethylene signaling pathways, suggesting their involvement in SWM resistance. These findings highlight Wolfsonian potential as an environmentally friendly and effective SWM management strategy.

Keywords: induction of resistance; plant immune inducer; sunflower White Mold


How to Cite this Article?

APA 7th edition
Zhang, W., Wang, X., Li, T., Hao, B., Zhao, Y., Fan, G., Meng, Q., Zhang, J., & Zhao, J. (2025). The Efficacy of Plant Immune Inducer Wolfsonian on Controlling Sunflower White Mold Caused by Sclerotinia sclerotiorum. Helia, 48(82), 24-39. https://doi.org/10.29329/helia.2025.1334.2

Harvard
Zhang, W., Wang, X., Li, T., Hao, B., Zhao, Y., Fan, G., Meng, Q., Zhang, J. and Zhao, J. (2025). The Efficacy of Plant Immune Inducer Wolfsonian on Controlling Sunflower White Mold Caused by Sclerotinia sclerotiorum. Helia, 48(82), pp. 24-39.

Chicago 16th edition
Zhang, Wenbing, Xinbo Wang, Tie Li, Baizhen Hao, Yuping Zhao, Gen Fan, Qinglin Meng, Jian Zhang and Jun Zhao (2025). "The Efficacy of Plant Immune Inducer Wolfsonian on Controlling Sunflower White Mold Caused by Sclerotinia sclerotiorum". Helia 48 (82):24-39. https://doi.org/10.29329/helia.2025.1334.2

References
  1. Bektas, Y., and Eulgem, T. (2015). Synthetic plant defense elicitors. Frontiers in Plant Science 5: 804. [Google Scholar]
  2. Boland, G. J., and Hall, R. (1994). Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 16(2): 93-108. [Google Scholar]
  3. Chen, R., Ma, D., Bao, Y., Wang, W., Du, D., Chen, X., Dou D., Liang, X. (2024). Joint application of plant immunity-inducing elicitors and fungicides to control Phytophthora diseases. Phytopathology Research, 6(1): 14. [Google Scholar]
  4. Dewen, Q., Yijie, D., Yi, Z., Shupeng, L., & Fachao, S. (2017). Plant immunity inducer development and application. Molecular Plant-Microbe Interactions, 30(5), 355-360. [Google Scholar]
  5. Hönig, M., Roeber, V. M., Schmülling, T., & Cortleven, A. (2023). Chemical priming of plant defense responses to pathogen attacks. Frontiers in Plant Science, 14, 1146577. [Google Scholar]
  6. Jiang, Y., Ji, X., Zhang, Y., Pan, X., Yang, Y., Li, Y., Guo, W., Wang, Y., Ma, Z., Lei B., Yan H., Liu, X. (2022). Citral induces plant systemic acquired resistance against tobacco mosaic virus and plant fungal diseases. Industrial Crops and Products, 183: 114948. [Google Scholar]
  7. Killi, D., Raschi, A., and Bussotti, F. (2020). Lipid peroxidation and chlorophyll fluorescence of photosystem II performance during drought and heat stress is associated with the antioxidant capacities of C3 sunflower and C4 maize varieties. International Journal of Molecular Sciences 21(14): 4846. [Google Scholar]
  8. Lu, C., Liu, H., Jiang, D., Wang, L., Jiang, Y., Tang, S., Hou X., Han X., Liu Z., Zhang M., Chu Z., Ding, X., (2019). Paecilomyces variotii extracts (ZNC) enhance plant immunity and promote plant growth. Plant and Soil, 441: 383-397. [Google Scholar]
  9. Mestries, E., Gentzbittel, L., Tourvieille de Labrouhe, D., Nicolas, P., and Vear, F. (1998). Analyses of quantitative trait loci associated with resistance to shape Sclerotinia sclerotiorum in sunflowers (shape Helianthus annuus L.) using molecular markers. Molecular Breeding, 4(3): 215-226. [Google Scholar]
  10. Moosa, A., Farzand, A., Sahi, S. T., Khan, S. A., Aslam, M. N., and Zubair, M. (2021). Salicylic acid and Cinnamomum verum confer resistance against penicillium rot by modulating the expression of defense linked genes in citrus reticulata blanco. Postharvest Biology and Technology, 181: 111649. [Google Scholar]
  11. Mueller, D. S., Pedersen, W. L., and Hartman, G. L. (2002). Effect of crop rotation and tillage system on sclerotinia stem rot on soybean. Canadian Journal of Plant Pathology, 24(4): 450-456. [Google Scholar]
  12. Mukherjee, S., Beligala, G., Feng, C., and Marzano, S. Y. (2024). Double-stranded RNA targeting white mold Sclerotinia sclerotiorum argonaute 2 for disease control via spray-induced gene silencing. Phytopathology, 114(6): 1253-1262. [Google Scholar]
  13. Oliveira, K. R., Körösi, K., Barna, B., Bennett, S. J., Gratão, P. L., & Bán, R. (2024). Changes in polyphenol oxidase and guaiacol peroxidase enzymes and the expression of pathogenesis-related genes in benzothiadiazole, mycorrhiza-induced or genetic resistance of sunflower plants affected by Sclerotinia sclerotiorum. Journal of Plant Pathology, 1-18. [Google Scholar]
  14. Pereyra, V. R., and Escande, A. R. (1994). Enfermedades del girasol en la Argentina: manual de reconocimieto. Buenos Aires, Argentina: Instituto Nacional de Tecnología Agropecuaria. [Google Scholar]
  15. Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic acids research, 30(9), e36-e36. [Google Scholar]
  16. Reglinski, T., Havis, N., Rees, H. J., & de Jong, H. (2023). The practical role of induced resistance for crop protection. Phytopathology®, 113(4), 719-731. [Google Scholar]
  17. Rodríguez, M. A., Venedikian, N., Bazzalo, M. E., and Godeas, A. (2004). Histopathology of Sclerotinia sclerotiorum attack on flower parts of Helianthus annuus heads in tolerant and susceptible varieties. Mycopathologia, 157: 291-302. [Google Scholar]
  18. Rönicke, S., Hahn, V., Vogler, A., and Friedt, W. (2005). Quantitative trait loci analysis of resistance to Sclerotinia sclerotiorum in sunflower. Phytopathology, 95(7): 834-839. [Google Scholar]
  19. Sackston, W. E. (1981). The sunflower crop and disease: progress, problems, and prospects. Plant Disease, 65(8): 643-648. [Google Scholar]
  20. Sackston, W. E. (1957). Diseases of sunflowers in Uruguay. The Plant Disease Reporter, 41: 885-889. [Google Scholar]
  21. Sackston, W. E. (1978). Sunflower disease map in Europe and adjacent mediterranean countries. Helia, 1: 21-31. [Google Scholar]
  22. Shuai L., Yuan Y., Chen P., Lin S. (2011). Correlation between H2O2 scavenging system and flavonoids accumulation of Scutellaria baicalensis. Zhongguo Zhong Yao Za Zhi, 36, 1707–1710. [Google Scholar]
  23. Troglia, C. (2003). Factores ambientales que afectan la supervivencia y producción de inóculo de Sclerotinia sclerotiorum y umbral mínimo de inóculo para la podredumbre húmeda del capítulo de girasol. Posgrado en Producción Vegetal, Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias, Unidad Integrada Balcarce Argentina, 80. [Google Scholar]
  24. Van Becelaere, G., and Miller, J. F. (2004). Combining ability for resistance to sclerotinia head rot in sunflower. Crop Science, 44(5): 1542-1545. [Google Scholar]
  25. Wang, X., Sun, Y., Liu, Y., Li, X., Gao, Q., Yang, J., Xie W., Yao, R., (2024). Effects of environmentally friendly materials on saline soil improvement and sunflower yields in the hetao irrigation region, China. Land 13(6): 870. [Google Scholar]
  26. Wilson, S. K., Pretorius, T., & Naidoo, S. (2023). Mechanisms of systemic resistance to pathogen infection in plants and their potential application in forestry. BMC Plant Biology, 23(1), 404. [Google Scholar]
  27. Zhao, C., Zhao, X., Zhang, J., Zou, W., Zhang, Y., Li, L., & Liu, J. (2016). Screening of bacillus strains from sun vinegar for efficient production of flavonoid and phenol. Indian Journal of Microbiology, 56, 498-503. [Google Scholar]