|  ISSN: 1018-1806   |  e-ISSN: 2197-0483

Original article | Helia 2024, Vol. 47(80) 18-35

Development and food applications of sunflower oils in Argentina

Natalia. G. Izquierdo, Eduardo Dubinsky, Raúl González Belo & Andrés Zambelli

pp. 18 - 35   |  DOI: https://doi.org/10.29329/helia.2024.763.3   |  Manu. Number: MANU-2410-26-0001

Published online: June 30, 2024  |   Number of Views: 11  |  Number of Download: 23


Abstract

Sunflower is the fourth-largest global source of vegetable oil (after soybean, palm, and rapeseed) that is primarily used for human consumption. Argentina ranks  as the third-largest producer of sunflower oil in the world. Breeders have developed genotypes with varying fatty acid compositions to provide alternatives to conventional sunflower oil and to replace trans fatty acids. High oleic and high stearic-high oleic genotypes have expanded the range of sunflower oil compositions available. High oleic oil presents greater oxidative stability than conventional sunflower oil, due to its lower content of polyunsaturated fatty acids. High stearic-high oleic oil and its fractions exhibit even greater stability and plasticity, making them suitable alternatives to high-melting animal fats, tropical oils, or hydrogenated lipids. Additionally, sunflower oil can modify its fatty acid composition based on the environmental conditions during grain filling, mainly conditioned by the temperature. This aspect is crucial for sunflower cultivation in Argentina, given the country’s extensive production area. The oxidative stability and technical functionality of these oils are mainly determined by their fatty acid composition; thus, different food applications of sunflower oils are described based on their specific characteristics.

Keywords: Breeding; environmental variability; frying; high oleic; high stearic-high oleic; margarines; trans fat


How to Cite this Article?

APA 6th edition
Izquierdo, N.G., Dubinsky, E., Belo, R.G. & Zambelli, A. (2024). Development and food applications of sunflower oils in Argentina . Helia, 47(80), 18-35. doi: 10.29329/helia.2024.763.3

Harvard
Izquierdo, N., Dubinsky, E., Belo, R. and Zambelli, A. (2024). Development and food applications of sunflower oils in Argentina . Helia, 47(80), pp. 18-35.

Chicago 16th edition
Izquierdo, Natalia. G., Eduardo Dubinsky, Raúl González Belo and Andrés Zambelli (2024). "Development and food applications of sunflower oils in Argentina ". Helia 47 (80):18-35. doi:10.29329/helia.2024.763.3.

References

    Aguirrezábal L.A.N., Martre P., Pereyra Irujo G.A., Echarte M.M. and Izquierdo N.G. (2015). Improving grain quality. Ecophysiological and modelling tools to develop management and breeding strategies. In: Sadras V and Calderini D. Crop Physiology - 2nd Edition. Editorial Elsevier - Academic Press. Pp. 423-465. ISBN: 978-0-12-417104-6.
    Alberio, C., Aguirrezábal, L. A. N., Izquierdo, N. G., Reid, R., Zuil, S. and Zambelli, A. (2018). Effect of genetic background on the stability of sunflower fatty acid composition in different high oleic mutations. Journal of the Science of Food and Agriculture, 98: 4074–4084. Available at http://dx.doi.org/10.1002/jsfa.8924 
    Alberio, C., Izquierdo, N. G., Galella, T., Zuil, S., Reid, R., Zambelli, A. and Aguirrezabal, L. A. N. (2016). A new sunflower high oleic mutation confers stable oil grain fatty acid composition across environments. European Journal of Agronomy, 73:25–33. Available at https://doi.org/10.1016/j.eja.2015.10.003 
    Alberio, C., Izquierdo, N.G. and Aguirrezabal, L.A.N. (2015). Sunflower Physiology and Agronomy. In Sunflower: Chemistry, Production, Processing, and Utilization; Martínez-Force, E., Dunford, N. T., Salas, J. J., Eds.; AOCS Press: Urbana, IL USA; pp 53–92. ISBN 978-1-893997-94-3.
    Angeloni, P., Echarte, M.M, Pereyra Irujo, G., Izquierdo, N.G. and Aguirrezábal, L. (2017). Fatty acid composition of high oleic sunflower hybrids in a changing environment. Field Crops Research, Special Issue: Modeling Crops from genotype to phenotype in a changing climate. Vol 202: 146-157. Available at https://doi.org/10.1016/j.fcr.2016.04.005 
    Ayala, A., Muñoz, M. F. and Argüelles, S. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014:1–31. Available at https://doi.org/10.1155/2014/360438 
    Bailey´s Industrial Oil and Fat Products. (1996). Fifth edition, volume 3, John Wiley & Sons, Inc.,Chapter 3: Shortening: Science and technology. Pag. 115.
    Berry (2005) Replacing Fat with Fat, Baking & Snack; Aug 01, page 69.
    Bootello García, M.A., Garces-Mancheño, R., Martinez Force, E. and Salas, J. (2011). Dry fractionation and crystallization kinetics of high-oleic high-stearic sunflower oil. J Am Oil Chem Soc 88(10):1511–1519. Available at http://dx.doi.org/10.1007/s11746-011-1827-7 
    Cantisán, S., Martínez-Force, E. and Garcés, R. (2000). Enzymatic studies of high stearic acid sunflower seed mutants. Plant Physiology and Biochemistry 38: 377–382. Available at doi:10.1016/S0981-9428(00)00758-0 
    Carvalho, C.G.P., Mazzola, L.F., Caldeira, A., Dalchiavon, F.C. and Mandarino, J.M.G. (2019). Quality of sunflower oil obtained in the main producing region of Brazil: Adherence to the Codex Alimentarius. Journal of the American Oil Chemists’ Society, 96: 789–794. Availabe at http://dx.doi.org/10.1002/aocs.12206 
    Crupkin, M. and Zambelli, A. (2008). Detrimental impact of trans fats on human health: stearic acid-rich fats as possible substitutes. Comprehensive Reviews in Food Science and Food Safety 7, 271–279. doi:10.1111/j.1541-4337.2008.00045.x 
    Dar, A.A., Choudhury, A.R., Kancharla, P.K. and Arumugam, N. (2017). The FAD2 gene in plants: Occurrence, regulation, and role. Frontiers in Plant Science, 8:1789. Available at https://doi.org/10.3389/fpls.2017.01789 
    Dawczynski, C. and Lorkowski, S. (2016). Trans -fatty acids and cardiovascular risk: Does origin matter? Expert Review of Cardiovascular Therapy, 14:1001–1005.
    de Souza, R.J., Mente, A., Maroleanu, A., Cozma, A.I., Ha, V., Kishibe, T. and Anand, S.S. (2015). Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and metanalyses of observational studies. BMJ, 351:h3978. Available at http://dx.doi.org/10.1136/bmj.h3978 
    Debaeke, P. and Izquierdo, N.G. (2020). Sunflower. In: Crop Physiology: Case Histories for Major Crops. Academic Press, 3rd Edition. Editores: V. Sadras and D. Calderini. Capítulo 16. Pp. 482-517. ISBN 978-0-12-819194-1.
    Downs, S.M., Bloem, M.Z., Zheng, M., Catterall, E., Thomas, B., Veerman, L., and Wu, J.H. (2017). The impact of policies to reduce trans fat consumption: A systematic review of the evidence. Current Developments in Nutrition, 1:cdn.117.000778. Available at http://dx.doi.org/10.3945/cdn.117.000778 
    Dubinsky, E. and Garcés Mancheño, R. (2011). High-stearic/high-oleic sunflower oil: a versatile fat for food applications. inform Magazine AOCS June 2011, Vol. 22 (6)
    Echarte, M.M., Pereyra Irujo, G., Covi, M., Izquierdo, N.G. and Aguirrezábal, L.A.N. (2010). Producing better sunflower oils in a changing environment. Advances in Fats and Oils Research. Editor: Mabel Tomas. Editorial Research Signpost, Kerala (India). ISBN: 978-81-7895-472-1. pp. 1-23. 
    FDA. (2018). FDA completes review of qualified health claim petition for oleic acid and the risk of coronary heart disease. Available at https://www.fda.gov/food/cfsan-constituent-updates/fdacompletes-review-qualified-health-claim-petition-oleic-acid-andrisk-coronary-heart-disease 
    Ferfuia, C., Turi, M. and Vannozzi, G.P. (2015). Variability of seed fatty acid composition to growing degree-days in high oleic acid sunflower genotypes. Helia, 38:61–78. Available at http://dx.doi.org/10.1515/helia-2014-0022 
    Fernández-Moya, V., Martínez-Force, E. and Garcés, R. (2002). Temperature Effect on a High Stearic Acid Sunflower Mutant. Phytochem. 59: 33–38. Available at https://doi.org/10.1016/S0031-9422(01)00406-X 
    Fick, G.N. (1984). Sunflower products and methods for their production. US Patent 4627192.
    Frankel, E.N. (2005). Lipid oxidation. Oily Press Lipid Library Series. Second edition. Oily press. ISBN 978-0-9531949-8-8 
    Garcés, R., Martínez-Force, E., Salas, J.J. and Venegas-Calerón, M. (2009). Current Advances in Sunflower Oil and Its Applications. Lipid Technology 21: 79–82. Available at http://dx.doi.org/10.1002/lite.200900016 
    Garcés, R., Martinez-Force, E., Salas, J.J., Bootello, M.A. (2012). Alternatives to tropical fats based on high-stearic sunflower oils. Lipid Technol 24(3):63–65. Available at http://dx.doi.org/10.1002/lite.201200182 
    Garcés, R., Martínez-Force, E., Salas, J.J., Venegas-Calerón, M. (2209). Current Advances in Sunflower Oil and Its Applications. Lipid Technol. 21, 79–82. Available at https://doi.org/10.1002/lite.200900016
    González Belo, R., Nolasco, S., Mateo, C. and Izquierdo, N.G. (2017). Dynamics of oil and tocopherol accumulation in sunflower grains and its impact on final oil quality. European Journal of Agronomy 89: 124-130. Available at https://doi.org/10.1016/j.eja.2017.06.003 
    González Belo, R., Velasco, L., Nolasco, S.M. and Izquierdo, N.G. (2019). Oil Phytosterols concentration in sunflower is accounted for by oil weight per grain. Journal of the American Oil Chemist´s Society. 96: 1115-1123. Available at http://dx.doi.org/10.1002/aocs.12265 
    González Belo, R., Velasco, L., Nolasco, S.M. and Izquierdo, N.G. (2018). Dynamics of phytosterols content and concentration in sunflower grains. Crop and Pasture Science 69: 724-732. Available at http://dx.doi.org/10.1071/CP17438 
    Gouzy, A., Paulhe-Massol, A., Mouloungui, Z. and Merah, O. (2016). Effects of technical management on the fatty-acid composition of high-oleic and high-linoleic sunflower cultivars. Oilseeds and Fats, Crops and Lipids, 23: D502. Available at http://dx.doi.org/10.1051/ocl/2016039 
    Gunstone FD. (2002) Vegetable oils in food technology. Boca Raton, Florida, USA : CRC Press.
    Gupta (2006) The Fat Paradox, Baking & Snack, June 1, 2006.
    Hunter, J.E., Zhang, J. and Kris-Etherton, P.M. (2010). Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: a systematic review. Am. J. Clin. Nutr. 91: 1–18. Available at https://doi.org/10.3945/ajcn.2009.27661 
    Izquierdo, N.G. and Aguirrezábal. L. (2008). Genetic variability of the response of fatty acid composition to temperature. Field Crops Research 106: 116-125. Available at https://doi.org/10.1016/j.fcr.2007.10.016 
    Izquierdo, N.G., Aguirrezábal, L., Andrade, F., Geroudet, C., Pereyra Iraola, M. and Valentinuz, O. (2009). Intercepted solar radiation affects oil fatty acid composition in crop species. Field Crops Research 114: 66-74. Available at http://dx.doi.org/10.1016/j.fcr.2009.07.007 
    Izquierdo, N.G., Aguirrezábal, L.A.N., Martínez-Force, E., Garcés, R., Paccapelo, V, Andrade, F., Reid R. and Zambelli, A. (2013). Effect of growth temperature on the high stearic and high stearic-high oleic sunflower traits. Crop and Pasture Science 64: 18-25. Available at http://dx.doi.org/10.1071/CP12437 
    Izquierdo, N.G., Benech-Arnold, R., Batlla, D., González Belo, R. and Tognetti, J. (2017). Seed composition in oilcrops: its impact on seed germination performance. In: Oil Seed Crops: Yield and Adaptations under Environmental Stress. First Edition. Editor: Parvaiz Ahmad. Publisher John Wiley & Son Ltd. Chapter 3. Pp 34-51. 
    Izquierdo, N.G., Martínez-Force, E., Garcés, R., Aguirrezábal, L., Zambelli, A. and Reid, R. (2016). Temperature effect on triacylglycerol species in seed oil from high stearic sunflower lines with different genetic backgrounds. Journal of the Science of Food and Agriculture. 96: 4367-4376. Available at http://dx.doi.org/10.1002/jsfa.7646 
    Izquierdo, N.G., Nolasco, S., Mateo, C., Santos, D. and Aguirrezábal, L.A.N. (2011). Relationship between oil tocopherol concentration and oil weight per grain in several crop species. Crop and Pasture Science 62: 1088-1097. Available at http://dx.doi.org/10.1071/CP11313 
    Kiage, J. N., Merrill, P.D., Robinson, C.J., Cao, Y., Malik, T.A., Hundley, B.C. and Kabagambe, E.K. (2013). Intake of trans fat and all-cause mortality in the reasons for geographical and racial differences in stroke (REGARDS) cohort. American Journal of Clinical Nutrition, 97:1121–1128. Available at https://doi.org/10.3945/ajcn.112.049064 
    Kochhar, S. P. (2000). Stabilisation of frying oils with natural antioxidative components. European Journal of Lipid Science and Technology, 102(8‐9), 552-559. Available at http://dx.doi.org/10.1002/1438-9312(200009)102:8/9%3C552::AID-EJLT552%3E3.0.CO;2-V 
    Kwon, Y. (2016). Effect of trans-fatty acids on lipid metabolism: Mechanisms for their adverse health effects. Food Reviews International, 32:323–339. Available at http://dx.doi.org/10.1080/87559129.2015.1075214 
    Lacombe, S., Kaan, F., Leger, S. and Berville, A. (2001). An oleate desaturase and a suppressor loci direct high oleic acid content of sunflower (Helianthus annuus L) oil in the Pervenets mutant. Life Science, 324:839–845. Available at https://doi.org/10.1016/S0764-4469(01)01353-1 
    Lacombe, S., Souyris, I. and Bervillé, A.J. (2009). An insertion of oleate desaturase homologous sequence silences via siRNA the functional gene leading to high oleic acid content in sunflower seed oil. Molecular Genetics and Genomics, 281:43–54. Available at http://dx.doi.org/10.1007/s00438-008-0391-9 
    Laguerre, M., Lecomte, J. and Villeneuve, P. (2007). Evaluation of the ability of antioxidants to counteract lipid oxidation: Existing methods, new trends and challenges. Progress in Lipid Research, 46:244–282. Available at http://dx.doi.org/10.1016/j.plipres.2007.05.002 
    Manzocco, L., Calligaris, S., Anese, M. and Nicoli, M.C. (2016). Determination and prediction of shelf life of oils/fats and oil/fat–based foods. In M. Hu & C. Jacobsen (Eds.), Oxidative stability and shelf life of foods containing oils and fats (pp. 133–156). Urbana, IL: AOCS Press.
    Melgarejo, M. (2003). Cuadernillo N° 4 – ASAGIR –Asociación Argentina de Girasol. Available at https://www.asagir.org.ar/ver-publicacion-usos-del-girasol-en-nutrici%C3%B3n-18
    National Sunflower Association. (2018). Sunflower market outlook 2018. Available at https://www.sunflowernsa.com/magazine/articles/default.aspx?ArticleID=3775
    Neto, A.R., de Oliveira Miguel, A.M.R., Mourad, A.L., Henriques, E. and Alves, R.M.V. (2016). Environmental effect on sunflower oil quality. Crop Breeding and Applied Biotechnology, 16:197–204. Available at http://dx.doi.org/10.1590/1984-70332016v16n3a30 
    Nolasco, S., Aguirrezábal, L.A.N. and Lúquez, J. (2006). Variability in oil tocopherol concentration of sunflower hybrids (Helianthus annuus L.) in Argentina. Grasas y Aceites 57, 260–269. Available at http://dx.doi.org/10.3989/gya.2006.v57.i3.47 
    Nolasco, S.M., Aguirrezábal, L.A.N. and Crapiste, G.H. (2004). Tocopherol oil concentration in field-grown sunflower is accounted for by oil weight per seed. Journal of the American Oil Chemists’ Society 81, 1045–1051. Available at http://dx.doi.org/10.1007/s11746-004-1020-6 
    Ohlrogge, J. and Browse, J. (1995). Lipid biosynthesis. Plant Cell, 7: 957–970. Available at https://doi.org/10.1105/tpc.7.7.957 
    Osorio, J., Fernández-Martínez, J., Mancha, M. and Garcés, R. (1995). Mutant sunflowers with high concentration of saturated fatty acids in the oil. Crop Sci. 35: 739–742. Available at https://doi.org/10.2135/cropsci1995.0011183X003500030016x 
    PAHO (2020) Plan of action for the elimination of industrially produced trans-fatty acids 2020-2025. Available at https://iris.paho.org/handle/10665.2/51965
    Pan, L. (2015). Ultra-high oleic sunflower oil. Second High Oleic Congress, Paris, 2–4 September.
    Parziale, A. and Ooms, G. (2019). The global fight against trans-fat: The potential role of international trade and law. Global Health, 15(1): 46. Available at https://globalizationandhealth.biomedcentral.com/articles/10.1186/s12992-019-0488-4  
    Pleite, R., Martínez-Force, E. and Garcés, R. (2006). Inhibitors of fatty acid biosynthesis in sunflower seeds. Journal of Plant Physiology, 163:885–894. Available at https://doi.org/10.1016/j.jplph.2005.11.017 
    Redondo-Cuevas, L., Castellano, G., Torrens, F. and Raikos, V. (2018). Revealing the relationship between vegetable oil composition and oxidative stability: A multifactorial approach. Journal of Food Composition and Analysis, 66:221–229. Available at http://dx.doi.org/10.1016/j.jfca.2017.12.027 
    Restrepo, B.J. and Rieger, M. (2016). Denmark’s policy on artificial trans fat and cardiovascular disease. American Journal of Preventive Medicine, 50:69–76. Available at https://doi.org/10.1016/j.amepre.2015.06.018 
    Rossel, J. and Barry, (2004). Developments in Oils for Commercial Frying. 4th International Symposium on Deep-Frying, - Tastier and Healthier Fried Foods - Hagen/ Germany, 11-13.
    Rubinstein, A., Elorriaga, N., Garay, O.U., Poggio, R., Caporale, J., Matta, M.G., Augustovski, F., Pichon-Riviere, A. and Mozaffarian, D. (2015). Eliminating artificial trans fatty acids in Argentina: estimated effects on the burden of coronary heart disease and costs. Bull World Health Organ. 93(3): 614-622. Available at http://dx.doi.org/10.2471/BLT.14.150516 
    Salas, J.J., Bootello, M.A., Martínez-Force, E., Garcés, R. (2009) Tropical vegetables fats and butters: properties and new alternatives. OCL 16: 254–258. Available at https://doi.org/10.1051/ocl.2009.0278 
    Salas, J.J., Bootello, M.A., Martínez-Force, E., Venegas-Calerón, M., Garcés, R. (2021). High stearic sunflower oil: Latest advances and applications. OCL 28: 35. Available at https://doi.org/10.1051/ocl/2021022 
    Sanyal, A., Merrien, A., Decocq, G. and Fine, F. (2018). Stearic sunflower oil as a sustainable and healthy alternative to palm oil. A review. Agronomy for Sustainable Development 37: 18. Available at https://doi.org/10.1007/s13593-017-0426-x 
    Schuppert, G.F., Tang, S., Slabaugh, M.B. and Knapp, S.J. (2006). The sunflower high-oleic mutant Ol carries variable tandem repeats of FAD2-1, a seed-specific oleoyl-phosphatidyl choline desaturase. Molecular Breeding, 17:241–256. Available at http://dx.doi.org/10.1007/s11032-005-5680-y 
    Soldatov, K.I. (1976). Chemical mutagenesis in sunflower breeding. Proceedings of the 7th International Sunflower Conference, Krasnodar, pp. 352–357.
    Somerville, C., Browse, J., Jaworski, J. G. and Ohlrogge, J. B. (2000). Lipids. In B. B. Buchanan, W. Gruissem and R. L. Jones (Eds.), Biochemistry and molecular biology of plants (pp. 456–527). American Society of Plant Physiologists: Rockville, MD.
    Sottero, B., Leonarduzzi, G., Testa, G., Gargiulo, S., Poli, G. and Biasi, F. (2019). Lipid oxidation derived aldehydes and oxysterols between health and disease. European Journal od Lipid Science and Technology, 121: 1700047. Available at http://dx.doi.org/10.1002/ejlt.201700047 
    Tarrago-Trani, M.T., Phillips, K.M., Lemar, L.E. and Holden, J.M. (2006). New and existing oils and fats used in products with reduced trans-fatty acid content. Journal of the American Dietetic Association, 106:867–880. Available at http://dx.doi.org/10.1016/j.jada.2006.03.010 
    Tuberoso, C.I.G., Kowalczyk, A., Sarritzu, E., Cabras, P. (2007). Determination of antioxidant compounds and antioxidant activity in commercial oilseeds for food use. Food Chemistry 103, 1494–1501. Available at doi:10.1016/j.foodchem.2006.08.014 
    Uauy, R., Aro, A., Clarke, R., Ghafoorunissa, R., L’Abbé, M., Mozaffarian, D., Skeaff, C., Stender, S and Tavella, M. (2009). WHO scientific update on trans fatty acids: Summary and conclusions. European Journal of Clinical Nutrition, 63: S68–S75. Available at http://dx.doi.org/10.1038/ejcn.2009.15 
    USDA. (2019). Oilseeds: World markets and trade. Available at https://downloads.usda.library.cornell.edu/usda-esmis/files/tx31qh68h/n296xd515/w0892s45d/oilseeds.pdf 
    Van der Merwe, R., Labuschagne, M.T., Herselman, L. and Hugo, A. (2013). Stability of seed oil quality traits in high and mid-oleic acid sunflower hybrids. Euphytica, 193:157–168. Available at http://dx.doi.org/10.1007/s10681-013-0888-0 
    Velasco, L., Fernández-Martínez, J.M., Garcia-Ruiz, R., Dominguez, J. (2002). Genetic and environmental variation for tocopherol content and composition sunflower commercial hybrids. The Journal of Agricultural Science 139, 425–429. Available at doi:10.1017/S0021859602002678 
    Warner, K., Orr, P. and Glynn, M. (1997). Effect of fatty acid composition of oils on flavor and stability of fried foods. Journal of the American Oil Chemists´ Society. 74: 347-356. Available at https://doi.org/10.1007/s11746-997-0090-4 
    Warner, K.A. (2006). Flavor Development in High Stability Oils. 97th Annual Meeting and Expo of the American Oil Chemists' Society. P 44.
    Warner, K.A. and Gupta, M. (2005). Potato Chip Quality and Frying Oil Stability of High Oleic Acid Soybean Oil. Journal of Food Science. 70(6):395-400. Available at http://dx.doi.org/10.1111/j.1365-2621.2005.tb11462.x 
    Watkins, C. (2005). The mystery of the longer life frying oil-" So what is that?" is the response from users of expeller-expressed oil after realizing they fried greater amounts of food than they do with extracted. Inform-International News on Fats Oils and Related Materials, 16(2), 69-73. 
    WHO. (2018). REPLACE trans fat: An action package to eliminate industrially-produced trans-fatty acids. Available at from https://www.who.int/docs/default-source/documents/replace-transfats/replace-action-package.pdf 
    Zambelli, A. (2021). Current status of high oleic seed oils in food processing. Journal of the American Oil Chemists' Society 98: 129–137. Available at https://doi.org/10.1002/aocs.12450 
    Zambelli, A., León, A. and Garcés, R. (2015). Mutagenesis in sunflower. In E. Martínez-Force, N.T. Dunford, & J.J. Salas (Eds.), Sunflower oilseed. Chemistry, production, processing and utilization AOCS monograph series on oilseeds (Vol. 7, pp. 27–52). Urbana, IL: AOCS Press.