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SUMMARY

Although there are some examples of gene discovery for non-target site
mechanisms of tolerance in sunflower, the main focus of research and develop-
ment during the last decade was directed to the discovery of altered acetohy-
droxyacid synthase (AHAS) genes and enzymes. In this way, several natural or
induced mutant alleles of the sunflower Ahasl1 locus were reported and char-
acterized. Four of these alleles were utilized to develop different non-GMO
traits and technologies of weed control: Clearfield®, Clearfield Plus®, Sures,
and ExpressSun®. Each one of these technologies has their own characteris-
tics, cross-tolerance pattern, benefits and drawbacks, which are briefly
reviewed. Some methods to speed up the introgression of these traits into the
breeding program are described, as well as the dominance relationships
between some members of the multiallelic Ahasl1 locus. Proper utilization of
these technologies allowed, and will continue to allow, an excellent weed con-
trol for the sunflower crop. However, some of these genes and their allelic inter-
actions remain to be tested and developed in the years to come in order to
create novel technologies. Additionally, it is clear that only one mode of action -
the inhibition of the AHAS enzyme - is being exploited so far in sunflower. This
will prompt the rapid selection of tolerant weeds that may jeopardize the sus-
tainability of all these technologies. Selection over cultivated germplasm, wild
Helianthus species and mutagenized libraries will allow the discovery of new
sources of HT, especially to other modes of action apart from the inhibition of
AHAS, in order to complement the current technologies. 
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INTRODUCTION

Weeds compete with sunflower for moisture, nutrients, and depending on spe-
cies for light and space. Weed competition can cause substantial yield losses in sun-
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flower, with reports ranging from 20 to 70% (Blamey et al., 1997). Herbicides are
the most desirable method for weed control, especially under no-tilling conditions.
However, the availability of selective herbicides for the sunflower crop is quite lim-
ited and, due to the high cost of herbicide registration, new molecules of herbicides
are unlikely to be specifically developed for weed control in this crop. Growers have
traditionally relied on preemergence herbicides for weed control in sunflower. How-
ever, soil-active preemergence herbicides are expensive and require timely rainfall
or irrigation for activation. Also, some are marginally effective because of the nar-
row spectrum of weeds controlled (Miller and Alford, 2000). For this reason, gene
discovery and trait development for herbicide tolerance (HT) in sunflower, particu-
larly imidazolinones (IMI) and sulfonylureas (SU), was an active area of research
during the past decade to provide non-GMO strategies of weed control  in this crop
(Sala et al., 2012b).

TYPES OF HERBICIDE TOLERANCE
There are two primary mechanisms of HT in sunflower: (i) tolerance caused by

mutations in target sites of the herbicide (target-site tolerance), and (ii) tolerance
caused by mutations in non-target sites (non-target site tolerance). Target-site tol-
erance involves a reduced sensitivity of target specific enzymes or proteins and,
thus, this type of tolerance is mostly monogenic (Tranel and Wright, 2002). Non-tar-
get tolerance, on the other hand, involves several mechanisms, such as reduced
uptake or translocation of the herbicide, increased rate of herbicide detoxification,
decreased rate of herbicide activation, or sequestration of the herbicide away from
the target site into the vacuole or the apoplast (Yuan et al., 2006). Both types of HT
are present in sunflower, and, in fact the tolerance of one of the current technologies
of weed control, Imisun sunflowers, is the result of the additive interaction between
target and non-target site mechanisms (Breccia et al., 2012; Sala et al., 2012c).

Non-target-site herbicide tolerance

Herbicides can cause several injury problems to the sunflower crop (Blamey et
al., 1997). As a matter of fact, sunflower genotypes varied widely in their response
to soil-applied and to post-emergence herbicides. For several molecules, genotypic
response can range from susceptibility to tolerance and the tolerance level also var-
ied according to growth stage of the plants, herbicide rate and environmental condi-
tions, like temperature and relative humidity (Gillespie and Miller, 1983). Natural
variation for tolerance was recently investigated by inhibiting the activity of P450
monooxygenases (P450) and one line was selected showing significantly higher tol-
erance to imazamox, prosulfuron, and atrazine than susceptible lines (Kaspar et
al., 2011). In fact, the P450 gene family in plants encodes the most versatile class of
enzymes involved in the metabolic detoxification of xenobiotics and in non-target-
site herbicide tolerance in plants (Yuan et al., 2006). One of the first P450 genes
identified for HT, which metabolizes with high efficiency a wide range of xenobiotics
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and several herbicides, was cloned from Helianthus tuberosus (Battard et al.,
1988; Cabello Hurtado et al., 1988; Robineau et al., 1988). A mutant P450 gene
showing increased levels of HT was also reported in sunflower (León et al., 2008).
These observations indicate that there exists enough natural and induced variation
for P450s genes in sunflower to be used in developing new HT traits. 

Target-site-herbicide tolerance

IMI and SU herbicides have been demonstrated to have a broad spectrum of
weed control activity, flexibility in timing of application, low usage rates, and low
mammalian toxicity (Brown, 1990; Tan et al., 2005). These herbicides inhibit the
enzymatic activity of acetohydroxyacid synthase (AHAS, EC 4.1.3.18, also known as
acetolactate synthase, ALS; Shaner et al., 1984; Ray, 1984), the first enzyme in the
pathway for the synthesis of the branched chain amino acids valine, leucine, and
isoleucine (Singh, 1999). This same enzyme has been shown to be the site of action
for the triazolopyrimidines (TZ, Subramanian and Gerwick, 1989), pyrimidyloxy-
benzoates (POB, Subramanian et al., 1990), and sulfonylaminocarbonyl-tria-
zolinones (Santel et al., 1999).

Given their high effectiveness and low-toxicity, IMI and SU herbicides are
favored for agricultural use. However, the ability to use both types of herbicides in a
sunflower production system depends upon the availability of IMI- and SU-tolerant
hybrid cultivars. To produce such tolerant cultivars, it is imperative to develop IMI-
or SU-tolerant plants with altered AHAS genes and enzymes. These plants have
been discovered in sunflower, which permitted the development and commerciali-
zation of several herbicide-tolerant traits. Tolerance in these traits is due to a form
of the AHAS large subunit enzyme (AHASL) that is less sensitive to herbicide inhibi-
tion and is conferred by a single, partially dominant nuclear gene.

The reduction in herbicide binding is caused by mutations at key sites in the
genes coding for the catalytic subunit of AHAS. Several authors have reviewed
known mutations of the AHAS genes that confer tolerance to AHAS-inhibiting herbi-
cides in weeds and crops (Preston and Mallory-Smith, 2001; Tranel and Wright,
2002; Tan et al., 2005; Tan et al., 2006). Based on molecular studies, Kolkman et
al. (2004) identified and characterized three genes coding for the AHAS catalytic
subunits in sunflower (Ahasl1, Ahasl2 and Ahasl3). Ahasl1 is a multilallelic locus
and the only member of this small gene family where all the induced and natural
mutations for herbicide resistance were described thus far in sunflower (Figure 1).
Ahasl1-1 (also known as Imr1 or Arpur, Bruniard and Miller, 2001; Kolkman et al.,
2004; respectively) harbors a C-to-T mutation in codon 205 (Arabidopsis thaliana
nomenclature), which confers a moderate tolerance to IMI. Ahasl1-2 (also known as
Arkan) shows a C-to-T mutation in codon 197 conferring high levels of SU- tolerance
(Kolkman et al., 2004). Ahasl1-3 presents a G-to-A mutation in codon 122, which
confers high levels of IMI-tolerance (Sala et al., 2008c), and Ahasl1-4 harbors a G-
to-T mutation in codon 574, which endows broad range tolerance to four families of
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herbicides targeting AHAS (Sala and Bulos 2012a). Other resistant alleles at the
Ahasl1 locus do not have a formal designation yet. One of them is an allele that
shows a mutation in codon 203 conferring slight tolerance to IMI and susceptibility
to SU herbicides (León et al., 2007). Other alleles obtained by EMS mutagenesis
are present in line M7 (Gabard and Huby, 2001) and MUT28 (León et al., 2006).
Both of them have a mutation at the same codon as Ahasl1-2 conferring tolerance
to SU (Hawley, 2005; León et al., 2006). 

HERBICIDE TOLERANCE TRAITS
Many of the above-mentioned alleles are being used for the production of sun-

flower hybrids tolerant to herbicides or they are being developed to produce new
tolerance traits. In the following sections the current technologies for weed control
in sunflower using AIH are briefly summarized.

Clearfield® technology based on Imisun sunflowers

The first commercial HT trait in sunflowers is known as ‘Imisun’ and its devel-
opment started in 1996, when IMI-tolerant wild sunflowers were discovered in a
field in Kansas, USA. Subsequent crossing of these plants with cultivated sunflow-
ers lines gave rise to IMI-tolerant populations and lines (Al-Khatib et al., 1998),
which were released as donor materials for developing hybrid varieties (Jocic et al.,
2004; Tan et al., 2005). The inheritance of Imisun is additively controlled by two
genes, where one of them is the partially dominant allele Ahasl1-1 and the other a
modifier or enhancer factor (Miller and Al-Khatib, 2002; Bruniard and Miller,
2001). Variability for tolerance to IMI in homozygous Imisun inbred lines, together
with the synergistic effects of IMI and malathion over tolerance in certain Imisun
genotypes indicate that several physiological mechanisms are involved in the non-
target site component of tolerance of this trait (Sala et al., 2012c). In fact, to pro-
duce Imisun sunflower hybrids with commercial levels of tolerance to IMI, both tar-
get and non-target components of tolerance need to be expressed in the final variety.
Another important aspect of this technology is that the linkage drag from the wild
parent around the resistant gene determined a decrease in oil percent in the seed
(Trucillo Silva et al., 2010).

Clearfield Plus® technology based on CLPlus sunflowers

The second IMI tolerance trait in sunflowers, known as CLPlus, is controlled by
the expression of the partially dominant nuclear allele Ahasl1-3, which was devel-
oped by seed mutagenesis and selection with imazapyr (Sala et al., 2008b). Based
on a vast array of environmental conditions and in biochemical studies, it was
determined that the CLPlus trait provides superior herbicide tolerance to IMI to the
Imisun trait (Sala et al., 2008a & c, 2012d; Weston et al., 2012b). In fact, the
CLPlus trait displays the lowest level of inhibition of the AHAS enzyme extracts by
IMI, which results in a higher level of accumulation of biomass after IMI application
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at the above-ground (Sala et al., 2012a) and root levels (Sala et al., 2012e). Moreo-
ver, this superior level of tolerance also provides a better stability of the tolerance to
cope with the unpredictable portion of the environmental variation. In turn, this
greater stability determines a better reliability of the Clearfield Plus® technology
than the Imisun trait when both of them are challenged with different IMI molecules
and doses (Sala and Weston, 2010; Sala et al., 2012d). Due to the high levels of tol-
erance, only one homozygous component, namely Ahasl1-3, or the combination of
both Ahasl1-1 and Ahasl1-3 alleles in the final hybrid variety, are required to
achieve commercial tolerance levels (Sala et al., 2008a, 2012a; Sala and Weston,
2010). High level of tolerance of this trait over Imisun sunflowers also permits to
develop new herbicide formulations providing more flexible and reliable weed con-
trol (Pfenning et al., 2012). The absence of genes from a wild source around
Ahasl1-3 determines that the oil contents in the hybrids carrying the CLPlus trait
show the same oil yield per hectare as those of their conventional counterparts
(Weston et al., 2012b).

Sures sunflowers

SU-tolerant sunflowers were developed from wild sunflower populations dis-
covered in USA (Al-Khatib et al., 1999). The tolerance allele Ahasl1-2 was intro-
gressed into cultivated sunflower by forward crossing and selection with the
herbicide tribenuron and gave rise to the trait known as Sures (Miller and Al-
Khatib, 2004). Even though the inheritance of this trait has not been reported yet, it
is well established that the target-site-tolerance is the result of the mutation P197L
at the Ahasl1 locus (Kolkman et al., 2004 ) and that differences in crop injury
among Sures-tolerant breeding lines (Ahasl-2/Ahasl1-2) are the result of the pres-
ence of modifier genes (Miller and Zollinger, 2004). This trait was used to develop
SU-tolerant hybrid cultivar in many countries, increasing the range of available her-
bicides in sunflower (Jocić et al., 2011).

ExpressSun® technology

The same type of tolerance as Sures sunflowers was obtained by EMS mutagen-
esis over the line HA89 (Gabard and Huby, 2001) and was developed and commer-
cialized under the name ExpressSun® (Streit, 2012). 

CROSS-TOLERANCE TO DIFFERENT AHAS INHIBITORS 
HERBICIDES

Cross tolerance is defined as the expression of a genetically-endowed mecha-
nism conferring the ability to withstand herbicides from different chemical classes
(Hall et al., 1994). Different HT traits in sunflower showed striking differences in
their cross-tolerance level to AHAS inhibitor herbicides (Table 1). Ahasl1-1, for
example, confers tolerance to imazethapyr, imazamox, slight tolerance to thifensul-
furon and chlorimuron, but no tolerance to cloransulam-methyl, pyrithiobac or
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high doses of imidazolinones (Al-Khatib et al., 1998; Bruniard and Miller 2001;
White et al., 2002; Sala et al., 2008b). Plants carrying the Sures trait show toler-
ance to tribenuron (Miller and Al-Khatib, 2004), metsulfuron, and chlorsulfuron,
but complete susceptibility to imazapyr, imazapic, and imazamox (Sala et al.,
2008b). The mutant which gave rise to the ExpressSun® trait shows also good tol-
erance to tribenuron and ethametsulfuron-methyl but it is somewhat sensitive to
other SU (Gabard and Huby, 2001). By the contrary, the Clearfield Plus® trait con-
fers high levels of tolerance to IMI but complete susceptibility to SU (Sala et al.,
2008b). Ahasl1-4 presents a completely new pattern of cross-tolerance for sun-
flower, since it shows a broad range level of tolerance to different AHAS-inhibiting
herbicides (IMI, SU, TZ and POB). Furthermore, this allele also presents a higher
level of tolerance to IMI and SU than lines carrying the Imisun and the Sures traits,
respectively (Sala and Bulos, 2012a).

It is known that sunflower lines developed to tolerate some AHAS-inhibiting
herbicides are susceptible to foliar applications and, in many cases, to soil residues
of other AHAS-inhibiting herbicides (Howatt and Endress, 2006). In these cases,
the cross-tolerance of Ahasl1-4 could allow sunflower hybrids carrying this allele to
cope with the soil residues of other types of AHAS inhibiting herbicides from the fal-
low or the previous crop.

DOMINANCE RELATIONSHIPS AT THE Ahasl1 LOCUS
Literature about herbicide tolerance indicates that almost all tolerances are

inherited as partially to totally dominant traits. However, most studies reporting the
degree of dominance of a herbicide-tolerance trait were designed to assess the
inheritance of the tolerance mutation. As a consequence, a single threshold herbi-
cide is generally used and this single dose approach may not be appropriate to cor-
rectly assess dominance since the applied dose may affect apparent dominance and
recessivity (Roux et al., 2005). 

Using the Imisun and CLPlus alleles it was found that the degree of dominance
in the presence of IMI can vary from dominance to recessivity depending on the
resistant allele, the applied dose of herbicide and the variable considered (i.e.: bio-

Table 1: Cross-tolerance of several herbicide-tolerance traits of sunflower

Trait 
Type of herbicide tolerance 

SU IMI TZ POB

Conventional (wild type) S S S S

Imisun S/MS T S S

Sures T S S S

CLPlus S HT S S

AIR HT HT T T

References: SU, sulfonylureas; IMI, imidazolinones; TZ, triazolopyrimidines; POB, pyrimidyloxyben-
zoates; S, susceptible; T, tolerant; HT, highly tolerant; MS, medium susceptible. 
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mass accumulation or enzymatic activity, Sala et al., 2012a). Both resistant alleles
are recessive with respect to the wildtype allele at the enzymatic level but they
showed from dominance to recessivity at the phenotypic level. This discrepancy was
explained by the margin of error of the enzyme and by differences in AHAS func-
tionality of each of the tolerance-conferring AHAS gene mutations. Interestingly,
Ahasl1-3 showed dominance over Ahasl1-1 both at the phenotypic and enzymatic
levels and at all the tested doses, an observation that can be interpreted taking into
account the protein structure of the AHAS catalytic subunit (Sala et al., 2012a). On
the other hand, it was also observed that Ahasl1-2 shows dominance over Ahasl1-1
when challenged with SU-herbicides (Miller and Zollinger, 2004). Besides its inher-
ent importance to understand the evolution of the dominance, this type of research
has several practical implications ranging from plant breeding to weed manage-
ment. As a matter of fact, multiallelism at the Ahasl1 locus permits the exploitation
of several other allelic interactions in designing new technologies for weed control. 

BREEDING FOR HT AND HT-ASSISTED BREEDING IN 
SUNFLOWER

Phenotypic identification of HT involves the spraying of herbicide onto plants
grown in the field or greenhouse at early stages of development, usually V2-V4 and
selection of tolerant genotypes. Screening a large number of genotypes for HT in the

Figure 1: Genetics of AHAS-inhibitor herbicide tolerance in sunflower. There exist three 
genes encoding for catalytic subunits of the AHAS enzyme: Ahasl1, Ahasl2, and 
Ahasl3. Known mutations for herbicide tolerance so far described were located in 
Ahasl1. Formally described alleles of this gene, the site of the aminoacidic substi-
tution controlling tolerance in each case (following Arabidopsis thaliana nomen-
clature), and the herbicide tolerance trait developed from each allele/mutant are 
provided.
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field is time consuming and requires a large amount of resources and space. Under
these circumstances, the development of efficient and reliable diagnostic bioassays
or molecular markers for early screening of HT is needed. In this sense, immature-
embryo (Breccia et al., 2009) and seed germination bioassays were developed for
screening IMI-tolerance (Vega et al., 2008; Breccia et al., 2011; Gil et al., 2012) as
well as SU-tolerance (Dimitrijević et al., 2012). Moreover, introgression of genes for
herbicide resistance into high yielding sunflower germplasm is being facilitated by
marker assisted selection with diagnostic markers for each one of the resistance
alleles at the Ahasl1 locus (Kolkman et al., 2004; Bulos et al., 2010). 

It is well known, on the other hand, that the final value of a sunflower inbred
line can only be determined by testing its general and specific combining ability in
hybrid combinations. In this sense, HT traits can also be used as useful tools to
assist the breeding process. In fact, a male-sterilization system was developed
recently based on the adequate manipulation of the type of mutant at the Ahasl1
locus, doses and timing of herbicide application, plant zygosity and stage of devel-
opment. This system not only permits the sterilization of testers in the breeding
program, but also allows increasing the frequency of HT plants in the progeny due
to gametophytic selection (Sala and Bulos, 2012b). 

QUALITY ASSESSMENT OF HT COMMERCIAL HYBRIDS
Quality assessment should provide accurate and on time information to take

the best decisions in order to reduce production cost, meet commercialization
standards and customer expectations. To reach this goal, quality assurance should
start in the production field and should continue until the seed is dispatched to the
farmer. Hence, the integration of quality assurance with the production practices
led to a complete traceability of the seed. This, in turn, gives the opportunity to
introduce timely corrective actions and to improve the whole process continuously
(de Estrada et al., 2012). Considering the negative impact of genetic contamina-
tions (i.e. susceptible seed in an Imisun hybrid, for example) over yield perform-
ance of HT commercial hybrids, seed purity testing in HT sunflower is an area of
concern, continuous research and new developments.  Currently, determination of
off-types in HT sunflowers is carried out in off season nurseries and is comple-
mented by the assessment of trait purity by bioassays and molecular markers (see,
for example, Katz et al., 2012). Likewise, by using Real Time PCR technology it is
possible to detect up to 0.2% of contaminant seeds in bulks of 1000 to 3000 seeds
of a HT hybrid (Sensolini et al., 2012). 

WEED CONTROL
IMI and SU herbicides provide excellent broad-spectrum weed control in sun-

flower, including some of the most problematic weeds for the sunflower crop. In
addition, both families of herbicides allow the possibility to control broomrapes
(Orobanche cernua and O. cumana), obligate root holoparasitic weeds that are
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insufficiently controlled by other herbicides traditionally used in sunflower. Rapid
changes in broomrape race composition have forced sunflower breeders and genet-
icists to search continuously for new sources of resistance to the new races of
Orobanche. The development of sunflower hybrids resistant to the IMI and SU her-
bicides has made it possible to successfully control broomrape regardless of the
race composition of the populations of these weeds (Škorić and Pacureanu, 2010)

Different HT traits, herbicides and methods of application - such as seed-coat-
ing, single or sequential post-emergent herbicide applications, timing of application,
or their combinations - have been devised, tested and/or validated in order to con-
trol these parasitic weeds (Alonso et al., 1998; Aly et al., 2001; Gabard and Huby,
2001; Sala et al., 2008d, among others). However, HT traits should be integrated
with resistant genes to different races of Orobanche in order to avoid the rapid evo-
lution of HT broomrapes. This combined strategy will provide the most sustainable
and durable method of broomrape control in the following years. 

ENVIRONMENTAL SAFETY AND CONTROL OF VOLUNTEER 
HT SUNFLOWERS

No competitive advantage other than that conferred by tolerance to SU or IMI
herbicides is conferred to HT sunflowers. In fact, no significant differences could be
detected when HT sunflowers and their conventional isohybrids were evaluated and
compared in several environmental situations by different agronomic traits covering
a broad range of characteristics that encompass the entire life cycle of the sunflower
plant. It is therefore not expected that HT sunflowers would present traits that
would render them invasive of natural habitats since none of the reproductive or
growth characteristics were modified. HT in itself will not cause Clearfield®, Clear-
field Plus® or ExpressSun® sunflowers to become more weedy or invasive in man-
aged habitats than conventional H. annuus. Gene flow from HT sunflowers to wild
sunflower populations is very likely to occur in many parts of the world. However,
some of the genes controlling the HT traits are already present at various levels in
wild sunflower populations (Sala and Bulos, 2012a  and references therein). In
addition, gene flow from HT sunflowers to wild sunflowers populations would not
be expected to result in increased invasiveness of the offspring, as the HT traits are
not associated with enhanced weediness. The occurrence of IMI- or SU-tolerant wild
sunflowers will not cause weed management issues as HT wild sunflowers will still
be easily controlled by herbicides with other modes of action or by cultivation
(Canadian Food Inspection Agency 2005, 2008, 2010).

It is likely that SU- or IMI-tolerant sunflower volunteers will not be controlled in
subsequent crops if an AHAS inhibitor herbicide is used as the sole weed control
tool. However, control of HT sunflowers as volunteer weeds in other crops or in fal-
low ground can readily be achieved by the use of herbicides with other modes of
action or by mechanical means (Canadian Food Inspection Agency 2005, 2008,
2010).
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CONCLUSION

Several herbicide resistant genes were discovered, and many HT traits and
technologies for weed control were developed for the sunflower crop in the last dec-
ade. Proper utilization of these technologies allowed, and will continue to allow, an
excellent weed control for the sunflower crop. However, some genes and allelic
interactions remain to be tested and developed in the following years in order to
create novel technologies. Additionally, it is clear that only one mode of action - the
inhibition of the AHAS enzyme - is being exploited until the present. This will
prompt the rapid selection of tolerant weeds that may jeopardize the sustainability
of all these technologies. Selection over cultivated germplasm, wild Helianthus spe-
cies and mutagenized libraries will allow the discovery of new sources of herbicide
tolerance, especially to other modes of action apart from the inhibition of AHAS, in
order to complement the current technologies. In addition, new interactions
between target and non-target site tolerance mechanisms should be explored as
potential novel HT traits for the sunflower crop.
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